Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875499

RESUMEN

The acyl carrier protein of Escherichia coli, termed AcpP, is a prototypical example of type II fatty acid synthase systems found in many bacteria. It serves as a central hub by accepting diverse acyl moieties (4-18 carbons) and shuttling them between its multiple enzymatic partners to generate fatty acids. Prior structures of acyl-AcpPs established that thioester-linked acyl cargos are sequestered within AcpP's hydrophobic lumen. In contrast, structures of enzyme-bound acyl-AcpPs showed translocation of AcpP-tethered acyl chains into the active sites of enzymes. The mechanistic underpinnings of this conformational interplay, termed chain-flipping, are unclear. Here, using heteronuclear NMR spectroscopy, we reveal that AcpP-tethered acyl chains (6-10 carbons) spontaneously adopt lowly populated solvent-exposed conformations. To this end, we devised a new strategy to replace AcpP's thioester linkages with 15N-labeled amide bonds, which facilitated direct "visualization" of these excited states using NMR chemical exchange saturation transfer and relaxation dispersion measurements. Global fitting of the corresponding data yielded kinetic rate constants of the underlying equilibrium and populations and lifetimes of solvent-exposed states. The latter were influenced by acyl chain composition and ranged from milliseconds to submilliseconds for chains containing six, eight, and ten carbons, owing to their variable interactions with AcpP's hydrophobic core. Although transient, the exposure of AcpP-tethered acyl chains to the solvent may allow relevant enzymes to gain access to its active thioester, and the enzyme-induced selection of this conformation will culminate in the production of fatty acids.

2.
Bioorg Med Chem Lett ; 92: 129410, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478957

RESUMEN

A collection of ß-carbolines based on the natural product harmine, a compound known to target the heat shock 90 protein of Plasmodium falciparum, was synthesized and tested for antimalarial activity and potential toxicity. Several of these novel compounds display promising bioactivity, providing a new potential therapeutic with a mode of action that differs versus any currently available clinical treatment.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Plasmodium falciparum , Carbolinas/farmacología , Respuesta al Choque Térmico
3.
Chembiochem ; 23(9): e202200021, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35318787

RESUMEN

Although melanin is one of the most ubiquitous polymers in living systems, our understanding of its molecular structure, biosynthesis and biophysical properties has been limited to only a small number of organisms other than humans. This is in part due to the difficulty associated with isolating pure melanin. While purification methods exist, they typically involve harsh treatments with strong acid/base conditions combined with elevated temperatures that can lead to the polymer backbone degradation. To be successful, a viable isolation method must deliver a selective, yet complete degradation of non-melanin biopolymers as well as remove small molecule metabolites that are not integrative to the melanin backbone. Here, we demonstrate the use of chemoenzymatic processing guided by fluorescent probes for the purification and isolation of native mammalian melanin without significant induction of chemical degradation. This multi-step purification-tracking methodology enables quantitative isolation of pure melanin from mammalian tissue for spectroscopic characterization.


Asunto(s)
Melaninas , Polímeros , Animales , Biopolímeros , Humanos , Mamíferos/metabolismo , Melaninas/química , Melaninas/metabolismo , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA