Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Immunol ; : e2350807, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873896

RESUMEN

One of the major challenges in the choice of the best therapeutic approach for the treatment of patients affected by hemophilia A (HA) is the definition of criteria predicting the formation of factor VIII (FVIII) neutralizing antibodies, called inhibitors. Both genetic and environmental elements influencing the immune response toward FVIII have been identified but still not all the factors causing the pathological rejection of FVIII have been identified. Since there is a connection between coagulation and inflammation, here we assessed the role played by the FVIII deficiency in shaping the humoral and cellular response toward an antigen other than FVIII itself. To this aim, we challenged both HA and wild-type (WT) mice with either FVIII or ovalbumin (OVA) and followed antigen-specific antibody level, immune cell population frequency and phenotype up to 9 weeks after the last antigen booster. The activation threshold was evaluated in vitro by stimulating the murine T cells with a decreasing dose of α-CD3. The humoral response to FVIII was similar between the two groups while both the in vivo and in vitro experiments highlighted an antigen-independent sensitivity of HA compared with WT T cells causing an increase in memory T-cell conversion and proliferation capability.

2.
Haematologica ; 108(6): 1544-1554, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700401

RESUMEN

Hemophilia A (HA) cell therapy approaches in pediatric individuals require suitable factor (F)VIII-producing cells for stable engraftment. Liver sinusoidal endothelial cells (LSEC) and hematopoietic stem cells (HSC) have been demonstrated to be suitable for the treatment of adult HA mice. However, after transplantation in busulfan (BU)-conditioned newborn mice, adult LSEC/HSC cannot efficiently engraft, while murine fetal liver (FL) hemato/vascular cells from embryonic day 11-13 of gestation (E11-E13), strongly engraft the hematopoietic and endothelial compartments while also secreting FVIII. Our aim was to investigate the engraftment of FL cells in newborn HA mice to obtain a suitable "proof of concept" for the development of a new HA treatment in neonates. Hence, we transplanted FL E11 or E13 cells and adult bone marrow (BM) cells into newborn HA mice with or without BU preconditioning. Engraftment levels and FVIII activity were assessed starting from 6 weeks after transplantation. FL E11-E13+ BU transplanted newborns reached up to 95% engraftment with stable FVIII activity levels observed for 16 months. FL E13 cells showed engraftment ability even in the absence of BU preconditioning, while FL E11 cells did not. BM BU transplanted newborn HA mice showed high levels of engraftment; nevertheless, in contrast to FL cells, BM cells cannot engraft HA newborns in BU non-conditioning regimen. Finally, none of the transplanted mice developed anti-FVIII antibodies. Overall, this study sheds some light on the therapeutic potential of healthy FL cells in the cure of HA neonatal/pediatric patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Hemofilia A , Ratones , Animales , Hemofilia A/terapia , Células Endoteliales , Hígado , Células Madre Hematopoyéticas , Trasplante de Células Madre , Busulfano , Ratones Endogámicos C57BL
3.
Mol Ther Nucleic Acids ; 35(1): 102116, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38333675

RESUMEN

Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.

5.
Nat Commun ; 10(1): 4491, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582751

RESUMEN

Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Células Epiteliales/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Organoides/trasplante , Ingeniería de Tejidos/métodos , Amnios/citología , Animales , Supervivencia Celular , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inducido químicamente , Células Epiteliales/trasplante , Supervivencia de Injerto , Xenoinjertos/irrigación sanguínea , Xenoinjertos/metabolismo , Xenoinjertos/trasplante , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones SCID , Organoides/irrigación sanguínea , Organoides/metabolismo , Ratas , Ratas Sprague-Dawley , Medicina Regenerativa/métodos , Esferoides Celulares , Estreptozocina , Técnicas de Cultivo de Tejidos/métodos , Trasplante Heterólogo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA