Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; : e9772, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867136

RESUMEN

RATIONALE: Glutamate carboxypeptidase II (GCPII) catalyzes the hydrolysis of N-acetylaspartylglutamate (NAAG) to yield glutamate (Glu) and N-acetylaspartate (NAA). Inhibition of GCPII has been shown to remediate the neurotoxicity of excess Glu in a variety of cell and animal disease models. A robust high-throughput liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was needed to quantify GCPII enzymatic activity in a biochemical high-throughput screening assay. METHODS: A dual-stream LC/MS/MS method was developed. Two parallel eluent streams ran identical HILIC gradient methods on BEH-Amide (2 × 30 mm) columns. Each LC channel was run independently, and the cycle time was 2 min per channel. Overall throughput was 1 min per sample for the dual-channel integrated system. Multiply injected acquisition files were split during data review, and batch metadata were automatically paired with raw data during the review process. RESULTS: Two LC sorbents, BEH-Amide and Penta-HILIC, were tested to separate the NAAG cleavage product Glu from isobaric interference and ion suppressants in the bioassay matrix. Early elution of NAAG and NAA on BEH-Amide allowed interfering species to be diverted to waste. The limit of quantification was 0.1 pmol for Glu. The Z-factor of this assay averaged 0.85. Over 36 000 compounds were screened using this method. CONCLUSIONS: A fast gradient dual-stream LC/MS/MS method for Glu quantification in GCPII biochemical screening assay samples was developed and validated. HILIC separation chemistry offers robust performance and unique selectivity for targeted positive mode quantification of Glu, NAA, and NAAG.

2.
J Biol Chem ; 298(8): 102228, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787375

RESUMEN

CAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription. We screened 428,759 compounds in a multiplexed assay using an ATXN2-luciferase reporter in human embryonic kidney 293 (HEK-293) cells and identified a diverse set of compounds capable of lowering ATXN2 transcription. We observed dose-dependent reductions of endogenous ATXN2 in HEK-293 cells treated with procillaridin A, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), and heat shock protein 990 (HSP990), known inhibitors of HSP90 and Na+/K+-ATPases. Furthermore, HEK-293 cells expressing polyglutamine-expanded ATXN2-Q58 treated with 17-DMAG had minimally detectable ATXN2, as well as normalized markers of autophagy and endoplasmic reticulum stress, including STAU1 (Staufen 1), molecular target of rapamycin, p62, LC3-II (microtubule-associated protein 1A/1B-light chain 3II), CHOP (C/EBP homologous protein), and phospho-eIF2α (eukaryotic initiation factor 2α). Finally, bacterial artificial chromosome ATXN2-Q22 mice treated with 17-DMAG or HSP990 exhibited highly reduced ATXN2 protein abundance in the cerebellum. Taken together, our study demonstrates inhibition of HSP90 or Na+/K+-ATPases as potentially effective therapeutic strategies for treating SCA2 and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Cerebelo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas de Unión al ARN/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética
3.
J Biol Chem ; 297(4): 101191, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34520759

RESUMEN

Accumulation of α-synuclein is a main underlying pathological feature of Parkinson's disease and α-synucleinopathies, for which lowering expression of the α-synuclein gene (SNCA) is a potential therapeutic avenue. Using a cell-based luciferase reporter of SNCA expression we performed a quantitative high-throughput screen of 155,885 compounds and identified A-443654, an inhibitor of the multiple functional kinase AKT, as a potent inhibitor of SNCA. HEK-293 cells with CAG repeat expanded ATXN2 (ATXN2-Q58 cells) have increased levels of α-synuclein. We found that A-443654 normalized levels of both SNCA mRNA and α-synuclein monomers and oligomers in ATXN2-Q58 cells. A-443654 also normalized levels of α-synuclein in fibroblasts and iPSC-derived dopaminergic neurons from a patient carrying a triplication of the SNCA gene. Analysis of autophagy and endoplasmic reticulum stress markers showed that A-443654 successfully prevented α-synuclein toxicity and restored cell function in ATXN2-Q58 cells, normalizing the levels of mTOR, LC3-II, p62, STAU1, BiP, and CHOP. A-443654 also decreased the expression of DCLK1, an inhibitor of α-synuclein lysosomal degradation. Our study identifies A-443654 and AKT inhibition as a potential strategy for reducing SNCA expression and treating Parkinson's disease pathology.


Asunto(s)
Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Indazoles/farmacología , Indoles/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , alfa-Sinucleína/biosíntesis , Células HEK293 , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , alfa-Sinucleína/genética
4.
PLoS Biol ; 16(8): e2006134, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080846

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.


Asunto(s)
Histona Demetilasas/fisiología , Histona Demetilasas con Dominio de Jumonji/fisiología , Proteínas de la Membrana/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Línea Celular , Citosol/metabolismo , ADN/metabolismo , Histona Metiltransferasas/fisiología , Histonas/fisiología , Humanos , Inmunidad Innata/fisiología , Inmunoterapia , Interferones/metabolismo , Interferones/fisiología , Células MCF-7 , Proteínas de la Membrana/metabolismo , Transducción de Señal
5.
J Biol Chem ; 293(35): 13750-13765, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29945974

RESUMEN

The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Nucleosomas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento/métodos , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Nucleosomas/efectos de los fármacos , Proteínas Represoras/metabolismo , Bibliotecas de Moléculas Pequeñas/química
6.
Immunogenetics ; 71(5-6): 407-420, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31037384

RESUMEN

Major histocompatibility complex (MHC) class II-associated invariant chain is a chaperone responsible for targeting the MHC class II dimer to the endocytic pathway, thus enabling the loading of exogenous antigens onto the MHC class II receptor. In the current study, in vivo and in vitro methods were used to investigate the regulation of the rainbow trout invariant chain proteins S25-7 and INVX, upon immune system activation. Whole rainbow trout and the macrophage/monocyte-like cell line RTS11 were treated with PMA at concentrations shown to induce IL-1ß transcripts and homotypic aggregation of RTS11. S25-7 transcript levels remained unchanged in the gill, spleen, and liver and were found to be significantly decreased in head kidney beginning 24 h post-stimulation. Meanwhile, INVX transcript levels remained unchanged in all tissues studied. Both S25-7 and INVX proteins were produced in gill and spleen tissues but their expression was unaffected by immune system stimulation. Surprisingly, neither INVX nor S25-7 protein was detected in the secondary immune organ, the head kidney. Analysis of RTS11 cultures demonstrated that both INVX and S25-7 transcript levels significantly increased at 96 h and 120 h following PMA stimulation before returning to control levels at 168 h. Meanwhile, at the protein level in RTS11, S25-7 remained unchanged while INVX had a significant decrease at 168 h post-stimulation. These results indicate that neither INVX nor S25-7 is upregulated upon immune system activation; thus, teleosts have evolved a system of immune regulation that is different than that found in mammals.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunomodulación/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/inmunología , Inmunidad Adaptativa , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunización , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Isoformas de Proteínas , Transcriptoma
7.
ACS Chem Biol ; 18(10): 2249-2258, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37737090

RESUMEN

The human acetyltransferase paralogues EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potencies of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize the binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of the relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.


Asunto(s)
Acetiltransferasas , Lisina , Humanos , Preparaciones Farmacéuticas , Proteína p300 Asociada a E1A , Proteína de Unión a CREB/química
8.
bioRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292747

RESUMEN

The human acetyltransferase paralogs EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potency of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.

9.
Biol Cell ; 103(4): 171-84, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21275903

RESUMEN

BACKGROUND INFORMATION: ARAP1 is an Arf (ADP-ribosylation factor)-directed GAP (GTPase-activating protein) that inhibits the trafficking of EGFR (epidermal growth factor receptor) to the early endosome. To further understand the function of ARAP1, we sought to identify proteins that interact with ARAP1. RESULTS: Here we report that ARAP1 associates with the CIN85 (Cbl-interacting protein of 85 kDa). Arg86 and Arg90 of ARAP1 and the SH3 (Src homology 3) domains of CIN85 are necessary for the interaction. We found that a mutant of ARAP1 with reduced affinity for CIN85 does not efficiently rescue the effect of reduced ARAP1 expression on EGFR trafficking to the early endosome. Reduced expression of CIN85 has a similar effect as reduced expression of ARAP1 on traffic of the EGFR. Cbl proteins regulate the endocytic trafficking of the EGFR by mediating ubiquitination of the EGFR. Overexpression of ARAP1 reduced ubiquitination of the EGFR by Cbl and slowed Cbl-dependent degradation of the EGFR. Reduced expression of ARAP1 accelerated degradation of EGFR but did not affect the level of ubiquitination of the receptor that was detected. CONCLUSION: ARAP1 interaction with CIN85 regulates endocytic trafficking of the EGFR and affects ubiquitination of EGFR. We propose a model in which the ARAP1-CIN85 complex drives exit of EGF-EGFR-Cbl complex from a pre-early endosome into a pathway distinct from the early endosome/lysosome pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis , Receptores ErbB/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Proteínas Activadoras de GTPasa/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas
10.
Nat Commun ; 13(1): 6364, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289220

RESUMEN

The F-box protein beta-transducin repeat containing protein (ß-TrCP) acts as a substrate adapter for the SCF E3 ubiquitin ligase complex, plays a crucial role in cell physiology, and is often deregulated in many types of cancers. Here, we develop a fluorescent biosensor to quantitatively measure ß-TrCP activity in live, single cells in real-time. We find ß-TrCP remains constitutively active throughout the cell cycle and functions to maintain discreet steady-state levels of its substrates. We find no correlation between expression levels of ß-TrCP and ß-TrCP activity, indicating post-transcriptional regulation. A high throughput screen of small-molecules using our reporter identifies receptor-tyrosine kinase signaling as a key axis for regulating ß-TrCP activity by inhibiting binding between ß-TrCP and the core SCF complex. Our study introduces a method to monitor ß-TrCP activity in live cells and identifies a key signaling network that regulates ß-TrCP activity throughout the cell cycle.


Asunto(s)
Técnicas Biosensibles , Proteínas F-Box , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo
11.
ACS Infect Dis ; 8(6): 1191-1203, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35648838

RESUMEN

SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Intervención Coronaria Percutánea , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Reposicionamiento de Medicamentos/métodos , Humanos , Pandemias , SARS-CoV-2 , Serina Endopeptidasas
12.
bioRxiv ; 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35169799

RESUMEN

SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allowed for rapid movement of existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites on the spike protein. TMPRSS2 has a protease domain capable of cleaving the two cut sites; therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.

13.
Fish Shellfish Immunol ; 29(2): 312-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20420918

RESUMEN

Western blotting with polyclonal antisera to polypeptides of the rainbow trout major histocompatibility (MH) genes and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to compare expression of MH genes in rainbow trout cell lines. One line was the spleen monocyte/macrophage-like RTS11, which grew loosely on plastic surfaces. Adherent cell lines were fibroblast-like RTG-2 from gonads and four epithelial-like cell lines from gill, intestine, liver and hepatoma: RTgill-W1, RTgutGC, RTL-W1, and RTH-149 respectively. All cell lines expressed a 45 kDa MHC class I alpha chain. All cell lines expressed beta-2-microglobulin (beta2m), which was at 11 kDa, but detection was abrogated following trypsinization prior to cell collection. All cell lines expressed transcripts for MH class II alpha and MH class II beta genes; however, MH class II polypeptides were expressed only in RTS11, the only cell line from a lineage of antigen-presenting cells. We report here that double stranded RNA up regulates beta2m and that these cell lines and antisera can be employed for studying MH regulation.


Asunto(s)
Complejo Mayor de Histocompatibilidad/inmunología , Oncorhynchus mykiss/inmunología , ARN Bicatenario/farmacología , Microglobulina beta-2/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Poli I-C/farmacología
14.
ACS Pharmacol Transl Sci ; 3(5): 997-1007, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33062952

RESUMEN

SARS-CoV-2 is the viral pathogen causing the COVID19 global pandemic. Consequently, much research has gone into the development of preclinical assays for the discovery of new or repurposing of FDA-approved therapies. Preventing viral entry into a host cell would be an effective antiviral strategy. One mechanism for SARS-CoV-2 entry occurs when the spike protein on the surface of SARS-CoV-2 binds to an ACE2 receptor followed by cleavage at two cut sites ("priming") that causes a conformational change allowing for viral and host membrane fusion. TMPRSS2 has an extracellular protease domain capable of cleaving the spike protein to initiate membrane fusion. A validated inhibitor of TMPRSS2 protease activity would be a valuable tool for studying the impact TMPRSS2 has in viral entry and potentially be an effective antiviral therapeutic. To enable inhibitor discovery and profiling of FDA-approved therapeutics, we describe an assay for the biochemical screening of recombinant TMPRSS2 suitable for high throughput application. We demonstrate effectiveness to quantify inhibition down to subnanomolar concentrations by assessing the inhibition of camostat, nafamostat, and gabexate, clinically approved agents in Japan. Also, we profiled a camostat metabolite, FOY-251, and bromhexine hydrochloride, an FDA-approved mucolytic cough suppressant. The rank order potency for the compounds tested are nafamostat (IC50 = 0.27 nM), camostat (IC50 = 6.2 nM), FOY-251 (IC50 = 33.3 nM), and gabexate (IC50 = 130 nM). Bromhexine hydrochloride showed no inhibition of TMPRSS2. Further profiling of camostat, nafamostat, and gabexate against a panel of recombinant proteases provides insight into selectivity and potency.

15.
bioRxiv ; 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32596694

RESUMEN

SARS-CoV-2 is the viral pathogen causing the COVID19 global pandemic. Consequently, much research has gone into the development of pre-clinical assays for the discovery of new or repurposing of FDA-approved therapies. Preventing viral entry into a host cell would be an effective antiviral strategy. One mechanism for SARS-CoV-2 entry occurs when the spike protein on the surface of SARS-CoV-2 binds to an ACE2 receptor followed by cleavage at two cut sites ("priming") that causes a conformational change allowing for viral and host membrane fusion. TMPRSS2 has an extracellular protease domain capable of cleaving the spike protein to initiate membrane fusion. A validated inhibitor of TMPRSS2 protease activity would be a valuable tool for studying the impact TMPRSS2 has in viral entry and potentially be an effective antiviral therapeutic. To enable inhibitor discovery and profiling of FDA-approved therapeutics, we describe an assay for the biochemical screening of recombinant TMPRSS2 suitable for high throughput application. We demonstrate effectiveness to quantify inhibition down to subnanomolar concentrations by assessing the inhibition of camostat, nafamostat and gabexate, clinically approved agents in Japan. Also, we profiled a camostat metabolite, FOY-251, and bromhexine hydrochloride, an FDA-approved mucolytic cough suppressant. The rank order potency for the compounds tested are: nafamostat (IC 50 = 0.27 nM), camostat (IC 50 = 6.2 nM), FOY-251 (IC 50 = 33.3 nM) and gabexate (IC 50 = 130 nM). Bromhexine hydrochloride showed no inhibition of TMPRSS2. Further profiling of camostat, nafamostat and gabexate against a panel of recombinant proteases provides insight into selectivity and potency.

16.
bioRxiv ; 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511420

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

17.
PLoS One ; 14(7): e0219143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31260484

RESUMEN

Receptor Tyrosine Kinase (RTK) signaling is essential for normal biological processes and disruption of this regulation can lead to tumor initiation and progression. Cbl proteins (Cbl, Cbl-b and Cbl-c) are a family of RING finger (RF) ubiquitin ligases that negatively regulate a variety of RTKs, including EGFR, MET, and RET. Recent studies have identified Cbl mutations associated with human myeloid neoplasias in approximately 5% of the cases. Cbl-c is the most recently identified human Cbl protein and is expressed exclusively in epithelial cells. We identified a novel cDNA that was isolated from a mouse mammary cancer from the C3(1) Large T Antigen transgenic model. This mutant cDNA encodes a protein that has a deletion in the RF domain of Cbl-c, thereby resembling known Cbl family mutations associated with myeoloid neoplasias. Genomic analysis of both parental and transgenic lines shows no evidence of germline mutation indicating that this mutation is likely a somatic mutation. The mutant protein enhances transformation of NIH 3T3 cells when expressed in combination with SV40 Large T antigen. Together these data are consistent with a second hit mutation. In overexpression studies, this mutant Cbl-c protein fails to mediate ubiquitination of activated EGFR and acts in a dominant negative fashion to prevent ubiquitination and downregulation of the activated EGFR by wild type Cbl proteins. Mechanistically, the mutant Cbl-c binds to the EGFR and prevents recruitment of the wild type Cbl protein. Furthermore, data mining reveals Cbl-c mutations associated with solid tumors in humans. Subsequent cell-based analysis demonstrates a similar loss of E3 function and dominant negative effects for one of these human mutations. These data suggest that like Cbl mutations in myeloid neoplasms, loss of Cbl-c function may contribute to the pathogenesis of solid tumors in murine models and in humans.


Asunto(s)
Mutación con Pérdida de Función , Neoplasias/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Secuencia de Aminoácidos , Animales , Antígenos Virales de Tumores/genética , Secuencia de Bases , Transformación Celular Neoplásica/genética , Femenino , Células HEK293 , Humanos , Masculino , Neoplasias Mamarias Experimentales/genética , Ratones , Ratones Transgénicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células 3T3 NIH , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-cbl/química , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Dominios RING Finger/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Transducción de Señal
18.
Mol Cancer Ther ; 18(3): 706-717, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30523048

RESUMEN

Tumor heterogeneity is a major challenge for cancer treatment, especially due to the presence of various subpopulations with stem cell or progenitor cell properties. In mouse melanomas, both CD34+p75- (CD34+) and CD34-p75- (CD34-) tumor subpopulations were characterized as melanoma-propagating cells (MPC) that exhibit some of those key features. However, these two subpopulations differ from each other in tumorigenic potential, ability to recapitulate heterogeneity, and chemoresistance. In this study, we demonstrate that CD34+ and CD34- subpopulations carrying the BRAFV600E mutation confer differential sensitivity to targeted BRAF inhibition. Through elevated KDM5B expression, melanoma cells shift toward a more drug-tolerant, CD34- state upon exposure to BRAF inhibitor or combined BRAF inhibitor and MEK inhibitor treatment. KDM5B loss or inhibition shifts melanoma cells to the more BRAF inhibitor-sensitive CD34+ state. These results support that KDM5B is a critical epigenetic regulator that governs the transition of key MPC subpopulations with distinct drug sensitivity. This study also emphasizes the importance of continuing to advance our understanding of intratumor heterogeneity and ultimately develop novel therapeutics by altering the heterogeneous characteristics of melanoma.


Asunto(s)
Antígenos CD34/genética , Proteínas de Unión al ADN/genética , Histona Demetilasas con Dominio de Jumonji/genética , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/antagonistas & inhibidores , Quinasa 1 de Quinasa de Quinasa MAP/genética , Melanoma/genética , Melanoma/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Sulfonamidas/farmacología , Vemurafenib/farmacología
19.
Mol Immunol ; 44(9): 2303-14, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17204328

RESUMEN

The Saprolegniales are responsible for various fish mycoses worldwide and considered the most important fungi afflicting fresh water fish. Saprolegniosis leads to massive epidermal destruction and macrophage recruitment, yet little is known regarding the cytological response of their piscine hosts. The objective of this study was to explore the response of fish macrophage to members of the Saprolegniales using the rainbow trout monocyte/macrophage cell line, RTS11. After 48 h in co-culture, RTS11 demonstrated chemotaxis, adherence and homotypic aggregation to both live and heat-killed fungal spores and mycelia. This aggregation was enhanced when using conditioned media from co-cultured RTS11 and Achlya, suggesting the presence of synergistic effectors of aggregation. Although fungal toxins were not evident, as cells remained viable throughout fungal overgrowth, phagocytosis was inhibited due to large fungal spore size, allowing these molds to evade macrophage defenses. Although class I MH and other viral response genes showed no significant change in expression, calreticulin and interleukin-8 were moderately up-regulated implicating calcium modulation and chemotactic response, respectively. Cyclooxygenase (COX-2) and the cytokines IL-1beta and TNFalpha were strongly up-regulated in the presence of Achlya, while gene expression of the class II major histocompatibility (MH II) receptor and associated molecules appeared down-regulated, suggesting fungal interference of immune function. Previous studies have shown an increased dependence of macrophage in immune function at low temperatures; based upon data presented here, this reduction of macrophage MH II receptor expression and inability to phagocytose spores may limit host response thereby providing increased susceptibility to these opportunistic pathogens.


Asunto(s)
Achlya/fisiología , Macrófagos/inmunología , Macrófagos/microbiología , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/microbiología , Saprolegnia/fisiología , Animales , Adhesión Celular , Agregación Celular , Técnicas de Cocultivo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Hifa/citología , Complejo Mayor de Histocompatibilidad/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato
20.
J Med Chem ; 61(7): 3193-3208, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29537847

RESUMEN

Isomers of chiral drugs can exhibit marked differences in biological activities. We studied the binding and inhibitory activities of 12 compounds against KDM5A. Among them are two pairs of enantiomers representing two distinct inhibitor chemotypes, namely, ( R)- and ( S)-2-((2-chlorophenyl)(2-(piperidin-1-yl)ethoxy)methyl)-1 H-pyrrolo[3,2- b]pyridine-7-carboxylic acid (compounds N51 and N52) and ( R) - and ( S) -N-(1-(3-isopropyl-1 H-pyrazole-5-carbonyl)pyrrolidin-3-yl)cyclopropanecarboxamide (compounds N54 and N55). In vitro, the S enantiomer of the N51/N52 pair (N52) and the R enantiomer of the N54/N55 pair (N54) exhibited about 4- to 5-fold greater binding affinity. The more potent enzyme inhibition of KDM5A by the R-isoform for the cell-permeable N54/N55 pair translated to differences in growth inhibitory activity. We determined structures of the KDM5A catalytic domain in complex with all 12 inhibitors, which revealed the interactions (or lack thereof) responsible for the differences in binding affinity. These results provide insights to guide improvements in binding potency and avenues for development of cell permeable inhibitors of the KDM5 family.


Asunto(s)
Amidas/farmacología , Ciclopropanos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína 2 de Unión a Retinoblastoma/antagonistas & inhibidores , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Ciclopropanos/química , Humanos , Modelos Moleculares , Conformación Molecular , Piridinas/síntesis química , Piridinas/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Ensayo de Tumor de Célula Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA