Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(4): e0132723, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428107

RESUMEN

Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which led us to investigate further their modes of action (MoA). Transcriptomic profiling with Z. parabailii showed that genes encoding transmembrane ATPase transporters, including Yor1, and genes homologous to the pleiotropic drug resistance (PDR) subfamily in Saccharomyces cerevisiae were upregulated in response to both compounds. Gene functions involved in fatty acid and lipid metabolism, proteostasis, and DNA replication processes were overrepresented among genes upregulated by glabridin and/or wighteone. Chemogenomic analysis using the genome-wide deletant collection for S. cerevisiae further suggested an important role for PM lipids and PM proteins. Deletants of gene functions involved in biosynthesis of very-long-chain fatty acids (constituents of PM sphingolipids) and ergosterol were hypersensitive to both compounds. Using lipid biosynthesis inhibitors, we corroborated roles for sphingolipids and ergosterol in prenylated isoflavonoid action. The PM ABC transporter Yor1 and Lem3-dependent flippases conferred sensitivity and resistance, respectively, to the compounds, suggesting an important role for PM phospholipid asymmetry in their MoAs. Impaired tryptophan availability, likely linked to perturbation of the PM tryptophan permease Tat2, was evident in response to glabridin. Finally, substantial evidence highlighted a role of the endoplasmic reticulum (ER) in cellular responses to wighteone, including gene functions associated with ER membrane stress or with phospholipid biosynthesis, the primary lipid of the ER membrane. IMPORTANCE Preservatives, such as sorbic acid and benzoic acid, inhibit the growth of undesirable yeast and molds in foods. Unfortunately, preservative tolerance and resistance in food spoilage yeast, such as Zygosaccharomyces parabailii, is a growing challenge in the food industry, which can compromise food safety and increase food waste. Prenylated isoflavonoids are the main defense phytochemicals in the Fabaceae family. Glabridin and wighteone belong to this group of compounds and have shown potent antifungal activity against food spoilage yeasts. The present study demonstrated the mode of action of these compounds against food spoilage yeasts by using advanced molecular tools. Overall, the cellular actions of these two prenylated isoflavonoids share similarities (at the level of the plasma membrane) but also differences. Tryptophan import was specifically affected by glabridin, whereas endoplasmic reticulum membrane stress was specifically induced by wighteone. Understanding the mode of action of these novel antifungal agents is essential for their application in food preservation.


Asunto(s)
Eliminación de Residuos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Alimentos , Triptófano/metabolismo , Levaduras , Lípidos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Sci Rep ; 11(1): 14180, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244528

RESUMEN

High resistance towards traditional antibiotics has urged the development of new, natural therapeutics against methicillin-resistant Staphylococcus aureus (MRSA). Prenylated (iso)flavonoids, present mainly in the Fabaceae, can serve as promising candidates. Herein, the anti-MRSA properties of 23 prenylated (iso)flavonoids were assessed in-vitro. The di-prenylated (iso)flavonoids, glabrol (flavanone) and 6,8-diprenyl genistein (isoflavone), together with the mono-prenylated, 4'-O-methyl glabridin (isoflavan), were the most active anti-MRSA compounds (Minimum Inhibitory Concentrations (MIC) ≤ 10 µg/mL, 30 µM). The in-house activity data was complemented with literature data to yield an extended, curated dataset of 67 molecules for the development of robust in-silico prediction models. A QSAR model having a good fit (R2adj 0.61), low average prediction errors and a good predictive power (Q2) for the training (4% and Q2LOO 0.57, respectively) and the test set (5% and Q2test 0.75, respectively) was obtained. Furthermore, the model predicted well the activity of an external validation set (on average 5% prediction errors), as well as the level of activity (low, moderate, high) of prenylated (iso)flavonoids against other Gram-positive bacteria. For the first time, the importance of formal charge, besides hydrophobic volume and hydrogen-bonding, in the anti-MRSA activity was highlighted, thereby suggesting potentially different modes of action of the different prenylated (iso)flavonoids.


Asunto(s)
Antibacterianos/farmacología , Flavonoides/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/química , Flavonoides/química , Humanos , Isoflavonas/química , Isoflavonas/farmacología , Fenoles/química , Fenoles/farmacología , Prenilación , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
3.
Food Chem ; 317: 126389, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32097822

RESUMEN

Glyceollins are a class of antimicrobial prenylated pterocarpans produced in soybean seedlings upon fungus elicitation. Priming with reactive oxygen species (ROS) prior to elicitation with Rhizopus oligosporus/oryzae (R) was investigated for its potential to enhance glyceollin production. ROS-priming prior to R-elicitation (ROS + R) increased glyceollin production (8.6 ± 0.9 µmol/g dry weight (DW)) more than 4-fold compared to elicitation without priming (1.9 ± 0.4 µmol/g DW). Furthermore, ROS-priming was superior to two physical primers which were used as benchmark primers, namely slicing (5.0 ± 0.6 µmol glyceollins/g DW) and sonication (4.8 ± 1.0 µmol glyceollins/g DW). Subsequently, the robustness of ROS + R was assessed by applying it to another soybean cultivar, where it also resulted in a significantly higher glyceollin content than R-elicitation without priming. ROS-priming prior to elicitation provides opportunities for improving the yield in large-scale production of natural antimicrobials due to the ease of application and the robustness of the effect across cultivars.


Asunto(s)
Antiinfecciosos/metabolismo , Glycine max/metabolismo , Enfermedades de las Plantas/inmunología , Pterocarpanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rhizopus/fisiología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Enfermedades de las Plantas/microbiología , Pterocarpanos/química , Pterocarpanos/farmacología , Plantones/química , Plantones/metabolismo , Plantones/microbiología , Glycine max/química , Glycine max/microbiología
4.
Phytochemistry ; 179: 112496, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33070076

RESUMEN

Elicited soybean (Glycine max (L.) Merrill, Leguminosae) seedlings can produce prenylated isoflavonoids from different subclasses, namely pterocarpans (glyceollins), isoflavones and coumestans. These prenylated isoflavonoids serve as defence compounds and can possess antimicrobial activity. Recently, we showed that priming with reactive oxygen species (ROS) specifically stimulated the production of glyceollins in Rhizopus spp.-elicited soybean seedlings (ROS + R). In this study, we achieved diversification of the inducible subclasses of prenylated isoflavonoids in soybean, by additional stimulation of two prenylated isoflavones and one prenylated coumestan. This was achieved by using a combination of the relatively long-lived ROS representative, H2O2, with AgNO3 prior to microbial elicitation. Microbial elicitation was performed with a live preparation of either a phytopathogenic fungus, Rhizopus spp. or a symbiotic bacterium, Bacillus subtilis. B. subtilis induced 30% more prenylated isoflavones than Rhizopus spp. in (H2O2 + AgNO3)-treated seedlings, without significantly compromising the total levels of glyceollins, compared to (ROS + R)-treated seedlings. The most abundant prenylated isoflavone induced was 6-prenyl daidzein, which constituted 60% of the total isoflavones. The prenylated coumestan, phaseol, was also induced in the (H2O2 + AgNO3)-treated and microbially elicited seedlings. Based on previously developed quantitative structure-activity relationship (QSAR) models, 6-prenyl daidzein and phaseol were predicted to be promising antibacterials. Overall, we show that treatment with H2O2 and AgNO3 prior to microbial elicitation leads to the production of promising antibacterial isoflavonoids from different subclasses. Extracts rich in prenylated isoflavonoids may potentially be applied as natural antimicrobial agents.


Asunto(s)
Fabaceae , Isoflavonas , Antibacterianos/farmacología , Peróxido de Hidrógeno , Isoflavonas/farmacología , Plantones , Glycine max
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA