Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pathol ; 259(1): 10-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36210634

RESUMEN

Chromatin licensing and DNA replication factor 1 (CDT1), a protein of the pre-replicative complex, is essential for loading the minichromosome maintenance complex (MCM) helicases onto the origins of DNA replication. While several studies have shown that dysregulation of CDT1 expression causes re-replication and DNA damage in cell lines, and CDT1 is highly expressed in several human cancers, whether CDT1 deregulation is sufficient to enhance tumorigenesis in vivo is currently unclear. To delineate its role in vivo, we overexpressed Cdt1 in the mouse colon and induced carcinogenesis using azoxymethane/dextran sodium sulfate (AOM/DSS). Here, we show that mice overexpressing Cdt1 develop a significantly higher number of tumors with increased tumor size, and more severe dysplastic changes (high-grade dysplasia), compared with control mice under the same treatment. These tumors exhibited an increased growth rate, while cells overexpressing Cdt1 loaded greater amounts of Mcm2 onto chromatin, demonstrating origin overlicensing. Adenomas overexpressing Cdt1 showed activation of the DNA damage response (DDR), apoptosis, formation of micronuclei, and chromosome segregation errors, indicating that aberrant expression of Cdt1 results in increased genomic and chromosomal instability in vivo, favoring cancer development. In line with these results, high-level expression of CDT1 in human colorectal cancer tissue specimens and colorectal cancer cell lines correlated significantly with increased origin licensing, activation of the DDR, and microsatellite instability (MSI). © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Colorrectales , Replicación del ADN , Proteínas de Unión al ADN , Animales , Humanos , Ratones , Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo
2.
J Cell Sci ; 132(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31028178

RESUMEN

A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Proteína Tumoral p73/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Células Epiteliales/citología , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Activación Transcripcional/genética , Proteína Tumoral p73/genética
3.
EMBO Rep ; 17(3): 400-13, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26882546

RESUMEN

Multiciliated cells are terminally differentiated, post-mitotic cells that form hundreds of motile cilia on their apical surface. Defects in multiciliated cells lead to disease, including mucociliary clearance disorders that result from ciliated cell disfunction in airways. The pathway controlling multiciliogenesis, however, remains poorly characterized. We showed that GemC1, previously implicated in cell cycle control, is a central regulator of ciliogenesis. GemC1 is specifically expressed in ciliated epithelia. Ectopic expression of GemC1 is sufficient to induce early steps of multiciliogenesis in airway epithelial cells ex vivo, upregulating McIdas and FoxJ1, key transcriptional regulators of multiciliogenesis. GemC1 directly transactivates the McIdas and FoxJ1 upstream regulatory sequences, and its activity is enhanced by E2F5 and inhibited by Geminin. GemC1-knockout mice are born with airway epithelia devoid of multiciliated cells. Our results identify GemC1 as an essential regulator of ciliogenesis in the airway epithelium and a candidate gene for mucociliary disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cilios/metabolismo , Factor de Transcripción E2F5/genética , Factor de Transcripción E2F5/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Geminina/genética , Geminina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mucosa Respiratoria/citología , Regulación hacia Arriba
4.
PLoS Genet ; 10(9): e1004499, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25187989

RESUMEN

In all animals managing the size of individual meals and frequency of feeding is crucial for metabolic homeostasis. In the current study we demonstrate that the noradrenalin analogue octopamine and the cholecystokinin (CCK) homologue Drosulfakinin (Dsk) function downstream of TfAP-2 and Tiwaz (Twz) to control the number of meals in adult flies. Loss of TfAP-2 or Twz in octopaminergic neurons increased the size of individual meals, while overexpression of TfAP-2 significantly decreased meal size and increased feeding frequency. Of note, our study reveals that TfAP-2 and Twz regulate octopamine signaling to initiate feeding; then octopamine, in a negative feedback loop, induces expression of Dsk to inhibit consummatory behavior. Intriguingly, we found that the mouse TfAP-2 and Twz homologues, AP-2ß and Kctd15, co-localize in areas of the brain known to regulate feeding behavior and reward, and a proximity ligation assay (PLA) demonstrated that AP-2ß and Kctd15 interact directly in a mouse hypothalamus-derived cell line. Finally, we show that in this mouse hypothalamic cell line AP-2ß and Kctd15 directly interact with Ube2i, a mouse sumoylation enzyme, and that AP-2ß may itself be sumoylated. Our study reveals how two obesity-linked homologues regulate metabolic homeostasis by modulating consummatory behavior.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Comidas/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología , Animales , Línea Celular , Retroalimentación , Homeostasis/fisiología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Octopamina/metabolismo , Canales de Potasio/metabolismo , Factor de Transcripción AP-2/metabolismo
5.
Nat Genet ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169259

RESUMEN

Oncogenic PIK3CA mutations generate large clones in aging human esophagus. Here we investigate the behavior of Pik3ca mutant clones in the normal esophageal epithelium of transgenic mice. Expression of a heterozygous Pik3caH1047R mutation drives clonal expansion by tilting cell fate toward proliferation. CRISPR screening and inhibitor treatment of primary esophageal keratinocytes confirmed the PI3K-mTOR pathway increased mutant cell competitive fitness. The antidiabetic drug metformin reduced mutant cell advantage in vivo and in vitro. Conversely, metabolic conditions such as type 1 diabetes or diet-induced obesity enhanced the competitive fitness of Pik3caH1047R cells. Consistently, we found a higher density of PIK3CA gain-of-function mutations in the esophagus of individuals with high body mass index compared with those with normal weight. We conclude that the metabolic environment selectively influences the evolution of the normal epithelial mutational landscape. Clinically feasible interventions to even out signaling imbalances between wild-type and mutant cells may limit the expansion of oncogenic mutants in normal tissues.

6.
Stem Cell Reports ; 17(6): 1395-1410, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35623353

RESUMEN

Impaired replication has been previously linked to growth retardation and microcephaly; however, why the brain is critically affected compared with other organs remains elusive. Here, we report the differential response between early neural progenitors (neuroepithelial cells [NECs]) and fate-committed neural progenitors (NPs) to replication licensing defects. Our results show that, while NPs can tolerate altered expression of licensing factors, NECs undergo excessive replication stress, identified by impaired replication, increased DNA damage, and defective cell-cycle progression, leading eventually to NEC attrition and microcephaly. NECs that possess a short G1 phase license and activate more origins than NPs, by acquiring higher levels of DNA-bound MCMs. In vivo G1 shortening in NPs induces DNA damage upon impaired licensing, suggesting that G1 length correlates with replication stress hypersensitivity. Our findings propose that NECs possess distinct cell-cycle characteristics to ensure fast proliferation, although these inherent features render them susceptible to genotoxic stress.


Asunto(s)
Microcefalia , Células-Madre Neurales , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , Humanos , Microcefalia/genética , Células-Madre Neurales/metabolismo , Origen de Réplica
7.
STAR Protoc ; 2(1): 100234, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33364622

RESUMEN

The recruitment of the minichromosome maintenance complex (MCM) on DNA replication origins is a critical process for faithful genome duplication termed licensing. Aberrant licensing has been associated with cancer and, recently, with neurodevelopmental diseases. Investigating MCM loading in complicated tissues, such as brain, remains challenging. Here, we describe an optimized approach for the qualitative and quantitative analysis of DNA-bound MCMs in the developing mouse cortex through direct imaging, offering an innovative insight into the research of origin licensing in vivo.


Asunto(s)
Corteza Cerebral/citología , Replicación del ADN , ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Animales , Corteza Cerebral/metabolismo , Ratones , Microscopía Fluorescente
8.
Front Cell Dev Biol ; 7: 29, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915332

RESUMEN

During the development of the cortex distinct populations of Neural Stem Cells (NSCs) are defined by differences in their cell cycle duration, self-renewal capacity and transcriptional profile. A key difference across the distinct populations of NSCs is the length of G1 phase, where the licensing of the DNA replication origins takes place by the assembly of a pre-replicative complex. Licensing of DNA replication is a process that is adapted accordingly to the cell cycle length of NSCs to secure the timed duplication of the genome. Moreover, DNA replication should be efficiently coordinated with ongoing transcription for the prevention of conflicts that would impede the progression of both processes, compromising the normal course of development. In the present review we discuss how the differential regulation of the licensing and initiation of DNA replication in different cortical NSCs populations is integrated with the properties of these stem cells populations. Moreover, we examine the implication of the initial steps of DNA replication in the pathogenetic mechanisms of neurodevelopmental defects and Zika virus-related microcephaly, highlighting the significance of the differential regulation of DNA replication during brain development.

9.
Nat Commun ; 9(1): 672, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445180

RESUMEN

Malignant pleural effusion (MPE) is a frequent metastatic manifestation of human cancers. While we previously identified KRAS mutations as molecular culprits of MPE formation, the underlying mechanism remained unknown. Here, we determine that non-canonical IKKα-RelB pathway activation of KRAS-mutant tumor cells mediates MPE development and this is fueled by host-provided interleukin IL-1ß. Indeed, IKKα is required for the MPE-competence of KRAS-mutant tumor cells by activating non-canonical NF-κB signaling. IL-1ß fuels addiction of mutant KRAS to IKKα resulting in increased CXCL1 secretion that fosters MPE-associated inflammation. Importantly, IL-1ß-mediated NF-κB induction in KRAS-mutant tumor cells, as well as their resulting MPE-competence, can only be blocked by co-inhibition of both KRAS and IKKα, a strategy that overcomes drug resistance to individual treatments. Hence we show that mutant KRAS facilitates IKKα-mediated responsiveness of tumor cells to host IL-1ß, thereby establishing a host-to-tumor signaling circuit that culminates in inflammatory MPE development and drug resistance.


Asunto(s)
Genes ras , Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , FN-kappa B/metabolismo , Derrame Pleural Maligno/metabolismo , Animales , Línea Celular Tumoral , Quimiocina CXCL1/metabolismo , Femenino , Humanos , Quinasa I-kappa B/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Receptores de Interleucina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA