Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 22(11): 2886-2897, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539418

RESUMEN

C-low-threshold mechanoreceptors (C-LTMRs) are sensory neurons that, beyond conveying pleasant touch, modulate nociceptive transmission within the spinal cord. However, pain alleviation by C-LTMRs remains poorly understood. Here, we show that the C-LTMR-derived TAFA4 chemokine induces a reinforcement of inhibitory synaptic transmission within spinal networks, which consequently depresses local excitatory synapses and impairs synaptic transmission from high-threshold C-fibers. In animals with inflammation induced by Freund's complete adjuvant, TAFA4 decreases the noxious stimulus-induced neuronal responses recorded in vivo and alleviates mechanical pain. Both effects are blocked by antagonists of GABAergic transmission. Furthermore, TAFA4 promotes microglial retraction in inflammation and increases the number of inhibitory synapses on lamina IIi somata. Altogether, these results demonstrate GABAergic interneurons to be the first integration relay for C-LTMRs and highlight a tight interplay between sensory neurons, microglial cells, and spinal interneurons, which fine-tunes inhibitory activity and nociceptive transmission in pathological conditions.


Asunto(s)
Citocinas/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Animales , Neuronas GABAérgicas/patología , Hiperalgesia/patología , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Técnicas de Placa-Clamp , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/patología , Transmisión Sináptica
2.
PeerJ ; 4: e2008, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27169000

RESUMEN

BACKGROUND: Motion sickness may be caused by a sensory conflict between the visual and the vestibular systems. Scopolamine, known to be the most effective therapy to control the vegetative symptoms of motion sickness, acts on the vestibular nucleus and potentially the vestibulospinal pathway, which may affect balance and motor tasks requiring both attentional process and motor balance. The aim of this study was to explore the effect of scopolamine on motor control and attentional processes. METHODS: Seven subjects were evaluated on four different tasks before and after a subcutaneous injection of scopolamine (0.2 mg): a one-minute balance test, a subjective visual vertical test, a pointing task and a galvanic vestibular stimulation with EMG recordings. RESULTS: The results showed that the reaction time and the movement duration were not modified after the injection of scopolamine. However, there was an increase in the center of pressure displacement during the balance test, a decrease in EMG muscle response after galvanic vestibular stimulation and an alteration in the perception of verticality. DISCUSSION: These results confirm that low doses of scopolamine such as those prescribed to avoid motion sickness have no effect on attentional processes, but that it is essential to consider the responsiveness of each subject. However, scopolamine did affect postural control and the perception of verticality. In conclusion, the use of scopolamine to prevent motion sickness must be considered carefully because it could increase imbalances in situations when individuals are already at risk of falling (e.g., sailing, parabolic flight).

3.
Neuron ; 84(1): 123-136, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25242222

RESUMEN

One feature of neuropathic pain is a reduced GABAergic inhibitory function. Nociceptors have been suggested to play a key role in this process. However, the mechanisms behind nociceptor-mediated modulation of GABA signaling remain to be elucidated. Here we describe the identification of GINIP, a Gαi-interacting protein expressed in two distinct subsets of nonpeptidergic nociceptors. GINIP null mice develop a selective and prolonged mechanical hypersensitivity in models of inflammation and neuropathy. GINIP null mice show impaired responsiveness to GABAB, but not to delta or mu opioid receptor agonist-mediated analgesia specifically in the spared nerve injury (SNI) model. Consistently, GINIP-deficient dorsal root ganglia neurons had lower baclofen-evoked inhibition of high-voltage-activated calcium channels and a defective presynaptic inhibition of lamina IIi interneurons. These results further support the role of unmyelinated C fibers in injury-induced modulation of spinal GABAergic inhibition and identify GINIP as a key modulator of peripherally evoked GABAB-receptors signaling.


Asunto(s)
Analgesia/métodos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Receptores de GABA-B/fisiología , Secuencia de Aminoácidos , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA