RESUMEN
Addressing the problems linked to tsetse-transmitted trypanosomiases requires considerable data on tsetse distribution and trypanosome infections. Although efforts to map tsetse and trypanosome infections have been undertaken at continental level, published data are still rare in wildlife reserves of West and Central Africa. To fill this gap, data on tsetse distribution and trypanosome infections were generated in the wildlife reserve of Santchou. For this study, each tsetse caught was identified and its DNA extracted. Different trypanosome species were identified by PCR. Entomological and parasitological data were transported onto a satellite image in order to visualize their distributions. From 195 Glossina palpalis palpalis that were caught, 33.8% (66/195) carried trypanosome infections with 89.4% (59/66) of single infections and 10.6% (7/66) mixed infections. From the 66 flies with trypanosome infections, 54.5% (36/66), 27.3% (18/66) and 18.2% (12/66) were respectively due to Trypanosoma congolense, Trypanosoma brucei s.l. and Trypanosoma vivax. The global infection rates were 18.5% (36/195) for Trypanosoma congolense (forest and savannah), 9.2% (18/195) for Trypanosoma brucei s.l. and 6.1% (12/195) for Trypanosoma vivax. The maps generated show the distribution of tsetse and trypanosome infections. This study showed an active transmission of trypanosomes in the wildlife reserve of Santchou. The maps enabled to identify areas with high transmission risk and where control operations must be implemented in order to eliminate tsetse and the diseases that they transmit.
Asunto(s)
Animales Salvajes/parasitología , Insectos Vectores/parasitología , Trypanosoma/genética , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/parasitología , Animales , Camerún/epidemiología , ADN Protozoario/genética , Insectos Vectores/genética , Insectos Vectores/fisiología , Reacción en Cadena de la Polimerasa , Trypanosoma/clasificación , Trypanosoma/aislamiento & purificación , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/genética , Moscas Tse-Tse/fisiologíaRESUMEN
Although several protocols were developed to extract DNA for soil-transmitted helminthiasis diagnostic, amplifying these extracts remains challenging due to DNA polymerase inhibitors. This study aimed to assess a DNA extraction method for efficient detection of soil-transmitted helminth species by determining stool mass and the type of DNA polymerase that can be used for this extraction method. For this study, 141 stool samples harbouring soil-transmitted eggs and 50 samples without egg were obtained from school-aged children of Makenene in the Centre region of Cameroon. DNA was extracted from 10, 20, 40 and 80 mg of stool using commercial kit and/or cetyltrimethylammonium bromide (CTAB)-based method. The amount of stool for molecular diagnostic of soil-transmitted helminthiasis was determined by amplifying Ascaris lumbricoides DNA. The performances of three DNA polymerases and CTAB-based method were assessed by amplifying DNA of different soil-transmitted helminth species. For this study, 94 stools with A. lumbricoides eggs, 39 with Trichuris trichuria and 15 with hookworm were analyzed. DNA of A. lumbricoides, T. trichuria, Necator americanus and Ancylostoma duodenale were detected in 97.9% of extracts from stools harbouring soil-transmitted helminth eggs. Soil-transmitted helminth DNAs were significantly (X2 = 17.66; df = 3; p ã00001) more amplified in extracts from 10 and 20 mg than those from 40 and 80 mg. The amplification rate with "Q5 high fidelity DNA polymerase" was significantly (X2 = 30.54; df = 2; p < 0.00001) higher than that of other DNA polymerases. Multiplex-PCR confirmed co-infections of A. lumbricoides with either T. trichuria or N. americanus. The extraction cost for the CTAB-based method was $1.45. This method appearedis reliable and 3 times cost effective than commercial kit. Its combination with the "Q5 high fidelity DNA polymerase" may improve soil-transmitted helminthiasis diagnostic.
Asunto(s)
Helmintiasis , Helmintos , Niño , Animales , Humanos , Cetrimonio , ADN de Helmintos , Suelo , Helmintiasis/diagnóstico , Heces , PrevalenciaRESUMEN
Eliminating schistosomiasis as a public health problem by 2030 requires a better understanding of the disease transmission, especially the asymmetric distribution of worm burden in individuals living and sharing the same environment. It is in this light that this study was designed to identify human genetic determinants associated with high burden of S. mansoni and also with the plasma concentrations of IgE and four cytokines in children from two schistosomiasis endemic areas of Cameroon. In school-aged children of schistosomiasis endemic areas of Makenene and Nom-Kandi of Cameroon, S. mansoni infections and their infection intensities were evaluated in urine and stool samples using respectively the Point-of-care Circulating Cathodic Antigen test (POC-CCA) and the Kato Katz (KK) test. Thereafter, blood samples were collected in children harbouring high burden of schistosome infections as well as in their parents and siblings. DNA extracts and plasma were obtained from blood. Polymorphisms at 14 loci of five genes were assessed using PCR-restriction fragment length polymorphism and amplification-refractory mutation system. The ELISA test enabled to determine the plasma concentrations of IgE, IL-13, IL-10, IL-4 and IFN-γ. The prevalence of S. mansoni infections was significantly higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in Makenene (48.6% for POC-CCA and 7.9% for KK) compared to Nom-Kandi (31% for POC-CCA and 4.3% for KK). The infection intensities were also higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in children from Makenene than those from Nom-Kandi. The allele C of SNP rs3024974 of STAT6 was associated with an increased risk of bearing high burden of S. mansoni both in the additive (p = 0.009) and recessive model (p = 0.01) while the allele C of SNP rs1800871 of IL10 was protective (p = 0.0009) against high burden of S. mansoni. The alleles A of SNP rs2069739 of IL13 and G of SNP rs2243283 of IL4 were associated with an increased risk of having low plasma concentrations of IL-13 (P = 0.04) and IL-10 (P = 0.04), respectively. This study showed that host genetic polymorphisms may influence the outcome (high or low worm burden) of S. mansoni infections and also the plasma concentrations of some cytokines.
Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Humanos , Niño , Schistosoma mansoni/genética , Interleucina-13/genética , Esquistosomiasis mansoni/epidemiología , Esquistosomiasis mansoni/genética , Interleucina-10/genética , Interleucina-4/genética , Citocinas/genética , Camerún/epidemiología , Antígenos Helmínticos/genética , Sensibilidad y Especificidad , Polimorfismo Genético , Prevalencia , Inmunoglobulina E , HecesRESUMEN
Preventive chemotherapy (PC) that remains the main control strategy recommended by the World Health Organization to achieve the elimination of soil-transmitted helminth (STH) infections as a public health problem must be strengthened by identifying the remaining transmission hot-spots for the deployment of appropriate control measures. This study was designed to assess the prevalence and infections intensities of soil-transmitted helminths and perform micro scale mapping in order to identify transmission hot-spots for targeted control operations. Stool samples were collected from 1775 children in ten primary schools of eight sub-districts of Makenene in Cameroon. Kato Katz technique was used to process and examine stool samples to detect the eggs of soil-transmitted nematodes. The prevalence of soil-transmitted helminth species as well as the infection intensities was compared. Data visualizations in forms of maps were made using Quantum geographic information system (QGIS) software. The overall prevalence of soil-transmitted helminth infections was 4.8% with a 95% confidence interval (CI) of 3.8-5.9%: 3.0% (95% CI 2.2-3.9) for Ascaris lumbricoides, 1.4% (95% CI 0.9-2.0) for Trichuris trichiura and 0.8% (95% CI 0.5-1.4) for hookworms. The prevalence of soil-transmitted helminth species differ significantly between schools and sub-districts. The intensity of infections was light (2.4%, 1.1% and 0.8%), moderate (0.4%, 0.1% and 0.1%) and heavy (0.2%, 0.2% and 0%) for A. lumbricoides, T. trichiura and hookworm respectively. The mean intensity of infections was 7255 EPG for A. lumbricoides, 2900 EPG for T. trichiura and 298 EPG for hookworm. Between schools, significant difference was recorded in the means of infection intensities of T. Trichiura and hookworms but not for A. lumbricoides. This difference was also significant for T. Trichiura when comparison were between sex. No significant difference were recorded when the comparison were between age. Fine mapping revealed that children harbouring heavy infections were clustered in the same sub-districts; highlighting the presence of high endemicity sub-districts and hot-spots for the transmission of different soil-transmitted helminth species. This study showed a diversity in the prevalence and transmission of different soil-transmitted helminth species. It also hightlighted the need for micro scale mapping to enable the localisation of high endemicity sub-districts and transmission hot-spot sites where targeted control operations must be deployed to achieve STH elimination.
Asunto(s)
Helmintiasis , Helmintos , Infecciones por Uncinaria , Ancylostomatoidea , Animales , Ascaris lumbricoides , Niño , Heces/parasitología , Helmintiasis/tratamiento farmacológico , Infecciones por Uncinaria/epidemiología , Humanos , Prevalencia , Suelo/parasitología , TrichurisRESUMEN
BACKGROUND: Schistosomiasis control relies mainly on mass drug administration of Praziquantel (PZQ) to school aged children (SAC). Although precision mapping has recently guided decision making, the sub-districts and the epidemiological differences existing between bio-ecological settings in which infected children come from were not taken into consideration. This study was designed to fill this gap by using POC-CCA and KK to comparatively determine the prevalence and infection intensities of Schistosoma mansoni (S. mansoni) and to perform fine-scale mapping of S. mansoni infections and its infection intensities with the overarching goal of identifying sub-districts presenting high transmission risk where control operations must be boosted to achieve schistosomiasis elimination. METHODOLOGY: During a cross- sectional study conducted in Makenene, 1773 stool and 2253 urine samples were collected from SAC of ten primary schools. S. mansoni infections were identified using the point of care circulating cathodic antigen (POC-CCA) and Kato-Katz (KK) test respectively on urine and stool samples. Geographical coordinates of houses of infected SAC were recorded using a global position system device. Schistosome infections and infection intensities were map using QGIS software. RESULTS: The prevalence of S. mansoni inferred from POC-CCA and KK were 51.3% and 7.3% respectively. Most infected SAC and those bearing heavy infections intensities were clustered in sub-districts of Baloua, Mock-sud and Carrière. Houses with heavily-infected SAC were close to risky biotopes. CONCLUSION: This study confirms the low sensitivity of KK test compared to POC-CCA to accurately identify children with schistosome infection and bearing different schistosome burden. Fine-scale mapping of schistosome infections and infection intensities enabled to identify high transmission sub-districts where control measures must be boosted to reach schistosomiasis elimination.
Asunto(s)
Schistosomatidae , Esquistosomiasis mansoni , Esquistosomiasis , Niño , Animales , Humanos , Esquistosomiasis mansoni/prevención & control , Praziquantel/uso terapéutico , Camerún/epidemiología , Antígenos Helmínticos , Sensibilidad y Especificidad , Schistosoma mansoni , Heces , PrevalenciaRESUMEN
BACKGROUND: Determining Schistosoma mansoni infection rate and intensity is challenging due to the low sensitivity of the Kato-Katz (KK) test that underestimates the true disease prevalence. Circulating cathodic antigen (CCA) excreted in urine is constantly produced by adult worms and has been used as the basis of a simple, non-invasive point of care test (POC-CCA) for Schistosoma mansoni infections. Although the abundance of CCA in urine is proportional to worm burden, the POC-CCA test is marketed as a qualitative test, making it difficult to investigate the wide range of infection intensities. This study was designed to compare the prevalence and intensity of S. mansoni by KK and POC-CCA and quantify, on fresh and frozen (<-20°C) urine samples, CCA using the visual scores and the ESEquant LR3 reader. METHODOLOGY: Stool and urine samples were collected from 759 school-aged children. The prevalence and intensity of S. mansoni were determined using KK and POC-CCA. The degree of the positivity of POC-CCA was estimated by quantifying CCA on fresh and frozen urine samples using visual scores and strip reader. The prevalence, the infection intensity as well the relative amounts of CCA were compared. RESULTS: The S. mansoni infection rates inferred from POC-CCA and KK were 40.7% and 9.4% respectively. Good correlations were observed between infection intensities recorded by; i) the reader and visual scoring system on fresh (Rho = 0.89) and frozen samples (Rho = 0.97), ii) the reader on fresh urine samples and KK (epg) (Rho = 0.44). Nevertheless, 238 POC-CCA positive children were negative for KK, and sixteen of them had high levels of CCA. The correlation between results from the reader on fresh and frozen samples was good (Rho = 0.85). On frozen samples, CCA was not detected in 55 samples that were positive in fresh urine samples. CONCLUSION: This study confirmed the low sensitivity of KK and the high capacity of POC-CCA to provide reliable data on the prevalence and intensity of S. mansoni infections. The lateral flow reader enabled accurate quantification of CCA under field conditions on fresh and frozen urine samples with less time and effort than KK.