Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 107(2): 384-392, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25028880

RESUMEN

The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Conformación de Ácido Nucleico , Pinzas Ópticas , Conformación Proteica
2.
Nano Lett ; 11(4): 1575-9, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21413779

RESUMEN

Controlling electron transport through a single-molecule device is key to the realization of nanoscale electronic components. A design requirement for single molecule electrical devices is that the molecule must be both structurally and electrically connected to the metallic electrodes. Typically, the mechanical and electrical contacts are achieved by the same chemical moiety. In this study, we demonstrate that the structural role may be played by one group (for example, a sulfide) while the electrical role may be played by another (a conjugated chain of C═C π-bonds). We can specify the electrical conductance through the molecule by modulating to which particular site on the oligoene chain the electrode binds. The result is a device that functions as a potentiometer at the single-molecule level.


Asunto(s)
Transporte de Electrón , Electrónica/instrumentación , Sistemas Microelectromecánicos/instrumentación , Nanoestructuras/química , Nanotecnología/instrumentación , Diseño Asistido por Computadora , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA