Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 30(20): R164-R173, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34240178

RESUMEN

The rapid increase in genomics research in Africa and the growing promise of precision public health (PPH) begs the question of whether African genomics has come of age and is being translated into improved healthcare for Africans. An assessment of the continent's readiness suggests that genetic service delivery remains limited and extremely fragile. The paucity of data on mutation profiles for monogenic disorders and lack of large genome-wide association cohorts for complex traits in African populations is a significant barrier, coupled with extreme genetic variation across different regions and ethnic groups. Data from many different populations are essential to developing appropriate genetic services. Of the proposed genetic service delivery models currently used in Africa-Uncharacterized, Limited, Disease-focused, Emerging and Established-the first three best describe the situation in most African countries. Implementation is fraught with difficulties related to the scarcity of an appropriately skilled medical genetic workforce, limited infrastructure and processes, insufficient health funding and lack of political support, and overstretched health systems. There is a strong nucleus of determined and optimistic clinicians and scientists with a clear vision, and there is a hope for innovative solutions and technological leapfrogging. However, a multi-dimensional approach with active interventions to stimulate genomic research, clinical genetics and overarching healthcare systems is needed to reduce genetic service inequalities and accelerate PPH on the continent. Human and infrastructure capacity development, dedicated funding, political will and supporting legislation, and public education and awareness, are critical elements for success. Africa-relevant genomic and related health economics research remains imperative with an overarching need to translate knowledge into improved healthcare. Given the limited data and genetic services across most of Africa, the continent has not yet come of 'genomics' age.


Asunto(s)
Genómica , Biosíntesis de Proteínas , África , Humanos
2.
Genome Med ; 16(1): 106, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187845

RESUMEN

BACKGROUND: Cardiovascular diseases (CVD) are a major health concern in Africa. Improved identification and treatment of high-risk individuals can reduce adverse health outcomes. Current CVD risk calculators are largely unvalidated in African populations and overlook genetic factors. Polygenic scores (PGS) can enhance risk prediction by measuring genetic susceptibility to CVD, but their effectiveness in genetically diverse populations is limited by a European-ancestry bias. To address this, we developed models integrating genetic data and conventional risk factors to assess the risk of developing cardiometabolic outcomes in African populations. METHODS: We used summary statistics from a genome-wide association meta-analysis (n = 14,126) in African populations to derive novel genome-wide PGS for 14 cardiometabolic traits in an independent African target sample (Africa Wits-INDEPTH Partnership for Genomic Research (AWI-Gen), n = 10,603). Regression analyses assessed relationships between each PGS and corresponding cardiometabolic trait, and seven CVD outcomes (CVD, heart attack, stroke, diabetes mellitus, dyslipidaemia, hypertension, and obesity). The predictive utility of the genetic data was evaluated using elastic net models containing multiple PGS (MultiPGS) and reference-projected principal components of ancestry (PPCs). An integrated risk prediction model incorporating genetic and conventional risk factors was developed. Nested cross-validation was used when deriving elastic net models to enhance generalisability. RESULTS: Our African-specific PGS displayed significant but variable within- and cross- trait prediction (max.R2 = 6.8%, p = 1.86 × 10-173). Significantly associated PGS with dyslipidaemia included the PGS for total cholesterol (logOR = 0.210, SE = 0.022, p = 2.18 × 10-21) and low-density lipoprotein (logOR = - 0.141, SE = 0.022, p = 1.30 × 10-20); with hypertension, the systolic blood pressure PGS (logOR = 0.150, SE = 0.045, p = 8.34 × 10-4); and multiple PGS associated with obesity: body mass index (max. logOR = 0.131, SE = 0.031, p = 2.22 × 10-5), hip circumference (logOR = 0.122, SE = 0.029, p = 2.28 × 10-5), waist circumference (logOR = 0.013, SE = 0.098, p = 8.13 × 10-4) and weight (logOR = 0.103, SE = 0.029, p = 4.89 × 10-5). Elastic net models incorporating MultiPGS and PPCs significantly improved prediction over MultiPGS alone. Models including genetic data and conventional risk factors were more predictive than conventional risk models alone (dyslipidaemia: R2 increase = 2.6%, p = 4.45 × 10-12; hypertension: R2 increase = 2.6%, p = 2.37 × 10-13; obesity: R2 increase = 5.5%, 1.33 × 10-34). CONCLUSIONS: In African populations, CVD and associated cardiometabolic trait prediction models can be improved by incorporating ancestry-aligned PGS and accounting for ancestry. Combining PGS with conventional risk factors further enhances prediction over traditional models based on conventional factors. Incorporating data from target populations can improve the generalisability of international predictive models for CVD and associated traits in African populations.


Asunto(s)
Población Negra , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Población Negra/genética , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Puntuación de Riesgo Genético
3.
BMJ Glob Health ; 8(12)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38084495

RESUMEN

OBJECTIVES: Multimorbidity (MM) is a growing concern linked to poor outcomes and higher healthcare costs. While most MM research targets European ancestry populations, the prevalence and patterns in African ancestry groups remain underexplored. This study aimed to identify and summarise the available literature on MM in populations with African ancestry, on the continent, and in the diaspora. DESIGN: A scoping review was conducted in five databases (PubMed, Web of Science, Scopus, Science Direct and JSTOR) in July 2022. Studies were selected based on predefined criteria, with data extraction focusing on methodology and findings. Descriptive statistics summarised the data, and a narrative synthesis highlighted key themes. RESULTS: Of the 232 publications on MM in African-ancestry groups from 2010 to June 2022-113 examined continental African populations, 100 the diaspora and 19 both. Findings revealed diverse MM patterns within and beyond continental Africa. Cardiovascular and metabolic diseases are predominant in both groups (80% continental and 70% diaspora). Infectious diseases featured more in continental studies (58% continental and 16% diaspora). Although many papers did not specifically address these features, as in previous studies, older age, being women and having a lower socioeconomic status were associated with a higher prevalence of MM, with important exceptions. Research gaps identified included limited data on African-ancestry individuals, inadequate representation, under-represented disease groups, non-standardised methodologies, the need for innovative data strategies, and insufficient translational research. CONCLUSION: The growing global MM prevalence is mirrored in African-ancestry populations. Recognising the unique contexts of African-ancestry populations is essential when addressing the burden of MM. This review emphasises the need for additional research to guide and enhance healthcare approaches for African-ancestry populations, regardless of their geographic location.


Asunto(s)
Costos de la Atención en Salud , Multimorbilidad , Humanos , Femenino , Masculino , África , Clase Social
4.
J Pers Med ; 12(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36143145

RESUMEN

Cardiovascular diseases (CVDs) are a leading cause of mortality and morbidity in South Africa. Risk stratification is the preferred approach to disease prevention, but identifying patients at high risk for CVD remains challenging. Assessing genetic risk could improve stratification and inform a clinically relevant precision medicine (PM) approach. Clinicians are critical to PM adoption, thus, this study explores practicing clinicians' perceptions of PM-based CVD risk stratification in South Africa's public health setting. Practicing clinicians (n = 109) at four teaching hospitals in Johannesburg, South Africa, completed an electronic self-administered survey. The effect of demographic and professional characteristics on PM-based CVD risk stratification perceptions was assessed. Fewer than 25% of respondents used clinical genetic testing, and 14% had formal genetics training. 78% had a low mean knowledge score, with higher scores associated with genetic training (p < 0.0005) and research involvement (p < 0.05). Despite limited knowledge and resources, 84% perceived PM approaches positively. 57% felt confident in applying the PM-based approach, with those already undertaking CVD risk stratification more confident (p < 0.001). High cost and limited access to genetics services are key barriers. Integrating genetic information into established clinical tools will likely increase confidence in using PM approaches. Addressing the genetics training gap and investment into the country's genomics capacity is needed to advance PM in South Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA