Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Infect Immun ; 90(12): e0026822, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36374098

RESUMEN

Melioidosis is an infectious disease caused by Burkholderia pseudomallei. High interferon gamma (IFN-γ) levels in naive mice were reported to mediate protection against B. pseudomallei infection. Invariant natural killer T (iNKT) cells can produce and secrete several cytokines, including IFN-γ. When iNKT cell-knockout (KO) BALB/c mice were infected with B. pseudomallei, their survival time was significantly shorter than wild-type mice. Naive BALB/c mice pretreated intraperitoneally with α-galactosylceramide (α-GalCer), an iNKT cell activator, 24 h before infection demonstrated 62.5% survival at the early stage, with prolonged survival time compared to nonpretreated infected control mice (14 ± 1 days versus 6 ± 1 days, respectively). At 4 h after injection with α-GalCer, treated mice showed significantly higher levels of serum IFN-γ, interleukin-4 (IL-4), IL-10, and IL-12 than control mice. Interestingly, the IFN-γ levels in the α-GalCer-pretreated group were decreased at 4, 24, and 48 h after infection, while they were highly increased in the control group. At 24 h postinfection in the α-GalCer group, bacterial loads were significantly lower in blood (no growth and 1,780.00 ± 51.21, P < 0.0001), spleens (no growth and 34,300 ± 1,106.04, P < 0.0001), and livers (1,550 ± 68.72 and 13,400 ± 1,066.67, P < 0.0001) than in the control group, but not in the lungs (15,300 ± 761.10 and 1,320 ± 41.63, P < 0.0001), and almost all were negative at 48 h postinfection. This study for the first time shows that early activation of iNKT cells by α-GalCer helps clearance of B. pseudomallei and prolongs mouse survival.


Asunto(s)
Melioidosis , Células T Asesinas Naturales , Ratones , Animales , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Interferón gamma/genética , Ratones Endogámicos C57BL
2.
Artículo en Inglés | MEDLINE | ID: mdl-34953481

RESUMEN

BACKGROUND: Melioidosis is an infectious disease caused by Burkholderia pseudomallei. In infected mice, IFN-γ can provide protection against B. pseudomallei infection. Invariant Natural Killer T (iNKT) cells are a subpopulation of T lymphocytes, activated by recognition of glycolipid ligands such as α-Galactosylceramide presented by CD1d, produce and secrete several cytokines, including IFN-γ and IL-4. The response of iNKT cells in human melioidosis was then investigated. OBJECTIVE: To determine the iNKT cells response in human melioidosis. METHODS: The number of human iNKT cells and its activation states were investigated in sepsis melioidosis patients compared with healthy controls using flow cytometry. The iNKT cells activation was confirmed in vitro using heatkilled B. pseudomallei with normal peripheral blood mononuclear cells. The components induced iNKT cell were also determined using different concentration of B. pseudomallei lipopolysaccharide (LPS), heat-killed B. pseudomallei treated with or without DNase, RNase, or proteinase. RESULTS: The number of human iNKT cells was significantly lower while the percentage of activated iNKT cells was higher in sepsis melioidosis when compared to control. In addition, B. pseudomallei can stimulate human iNKT cells in vitro. Heat-killed B. pseudomallei could activate iNKT cells but not relate to nucleic acid, proteins, or LPS. CONCLUSIONS: We found for the first time that the iNKT cells were activated during B. pseudomallei infection in human. However, the roles and the mechanism of iNKT cells during early state of infection needed to be further investigated.

3.
Int Immunol ; 31(8): 515-530, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30859183

RESUMEN

Natural killer (NK) cells are innate lymphoid cells having potent cytolytic function that provide host defense against microbial infections and tumors. Using our generated monoclonal antibody (mAb), named FE-1H10, new NK cell sub-populations in peripheral blood were identified. The molecules recognized by mAb FE-1H10 were expressed on a sub-population of CD3-CD56dim NK cells. The epitope recognized by mAb FE-1H10 was demonstrated to be N-glycan and proven to be different from CD57. Upon K562 stimulation, the CD56dimFE-1H10+ NK cell sub-population exhibited significantly lower cytolytic function with low ability to degranulate and release cytolytic granules compared to the CD56dimFE-1H10- NK cell sub-population. Moreover, the CD56dimFE-1H10+ NK cells produced less IFN-γ and TNF-α than the CD56dimFE-1H10- NK cells. We demonstrated here that mAb FE-1H10 could identify two sub-populations of circulating CD56dim NK cells with different functions. Our discovery of new sub-populations of NK cells improves our understanding of NK cell biology and may lead to the development of new approaches for NK cell therapy.


Asunto(s)
Células Asesinas Naturales/citología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/inmunología , Línea Celular , Humanos , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos BALB C
4.
Sci Rep ; 13(1): 18762, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907584

RESUMEN

Several vaccine programs were introduced during the COVID-19 pandemic, which included inactivated virus, DNA viral vectors and mRNA vaccines. Booster programs are recommended, especially for those in high-risk groups. However, many of these booster programs involve heterologous vaccines. This study enrolled volunteers who first received two full-dose CoronaVac vaccinations before receiving heterologous boosters with DNA- and/or mRNA-vaccines for an additional 2 doses (n = 40) or an additional 3 doses (n = 16). Our results showed no difference in side effects, neutralizing antibodies, or T-cell responses for any of the heterologous vaccination programs. However, the neutralizing capacity and IFN-γ responses against the Omicron variant in volunteers who received 4 or 5 doses were improved. Polarization of peripheral memory T cells after stimulation in all booster groups with Omicron peptide showed an increased trend of naïve and central memory phenotypes of both CD4+ and CD8+ T cells, suggesting that exposure to Omicron antigens will drive T cells into a lymphoid resident T cell phenotype. Our data support a continuous vaccination program to maximize the effectiveness of immunity, especially in people at high risk. Furthermore, the number of boosting doses is important for maintaining immunity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunas de Productos Inactivados
5.
Vaccine ; 40(48): 6963-6970, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283898

RESUMEN

BACKGROUND: The pandemic coronavirus disease 2019 (COVID-19) is a major global public health concern and several protective vaccines, or preventive/therapeutic approaches have been developed. Sinovac-CoronaVac, an inactivated whole virus vaccine, can protect against severe COVID-19 disease and hospitalization, but less is known whether it elicits long-term T cell responses and provides prolonged protection. METHODS: This is a longitudinal surveillance study of SARS-CoV-2 receptor binding domain (RBD)-specific IgG levels, neutralizing antibody levels (NAb), T cell subsets and activation, and memory B cells of 335 participants who received two doses of CoronaVac. SARS-CoV-2 RBD-specific IgG levels were measured by enzyme-linked immunosorbent assay (ELISA), while NAb were measured against two strains of SARS-CoV-2, the Wuhan and Delta variants. Activated T cells and subsets were identified by flow cytometry. Memory B and T cells were evaluated by enzyme-linked immune absorbent spot (ELISpot). FINDINGS: Two doses of CoronaVac elicited serum anti-RBD antibody response, elevated B cells with NAb capacity and CD4+ T cell-, but not CD8+ T cell-responses. Among the CD4+ T cells, CoronaVac activated mainly Th2 (CD4+ T) cells. Serum antibody levels significantly declined three months after the second dose. INTERPRETATION: CoronaVac mainly activated B cells but T cells, especially Th1 cells, were poorly activated. Activated T cells were mainly Th2 biased, demonstrating development of effector B cells but not long-lasting memory plasma cells. Taken together, these results suggest that protection with CoronaVac is short-lived and that a third booster dose of vaccine may improve protection.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Vacunación , Anticuerpos Neutralizantes , Inmunoglobulina G/análisis , Células TH1 , Vacunas de Productos Inactivados
6.
Nutrition ; 32(4): 486-90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26743975

RESUMEN

OBJECTIVES: Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. METHODS: We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. RESULTS: Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. CONCLUSIONS: The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries.


Asunto(s)
Biopelículas/efectos de los fármacos , Citrus/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caries Dental/tratamiento farmacológico , Regulación hacia Abajo , Pruebas de Sensibilidad Microbiana , Fenoles/análisis , Fenoles/farmacología , ARN Bacteriano/genética , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA