Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Commun ; 6(2): fcae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444909

RESUMEN

Disruption of the default mode network is a hallmark of Alzheimer's disease, which has not been extensively examined in atypical phenotypes. We investigated cross-sectional and 1-year longitudinal changes in default mode network sub-systems in the visual and language variants of Alzheimer's disease, in relation to age and tau. Sixty-one amyloid-positive Alzheimer's disease participants diagnosed with posterior cortical atrophy (n = 33) or logopenic progressive aphasia (n = 28) underwent structural MRI, resting-state functional MRI and [18F]flortaucipir PET. One-hundred and twenty-two amyloid-negative cognitively unimpaired individuals and 60 amyloid-positive individuals diagnosed with amnestic Alzheimer's disease were included as controls and as a comparison group, respectively, and had structural and resting-state functional MRI. Forty-one atypical Alzheimer's disease participants, 26 amnestic Alzheimer's disease participants and 40 cognitively unimpaired individuals had one follow-up functional MRI ∼1-2 years after the baseline scan. Default mode network connectivity was calculated using the dual regression method for posterior, ventral, anterior ventral and anterior dorsal sub-systems derived from independent component analysis. A global measure of default mode network connectivity, the network failure quotient, was also calculated. Linear mixed-effects models and voxel-based analyses were computed for each connectivity measure. Both atypical and amnestic Alzheimer's disease participants had lower cross-sectional posterior and ventral and higher anterior dorsal connectivity and network failure quotient relative to cognitively unimpaired individuals. Age had opposite effects on connectivity in Alzheimer's disease participants and cognitively unimpaired individuals. While connectivity declined with age in cognitively unimpaired individuals, younger Alzheimer's disease participants had lower connectivity than the older ones, particularly in the ventral default mode network. Greater baseline tau-PET uptake was associated with lower ventral and anterior ventral default mode network connectivity in atypical Alzheimer's disease. Connectivity in the ventral default mode network declined over time in atypical Alzheimer's disease, particularly in older participants, with lower tau burden. Voxel-based analyses validated the findings of higher anterior dorsal default mode network connectivity, lower posterior and ventral default mode network connectivity and decline in ventral default mode network connectivity over time in atypical Alzheimer's disease. Visuospatial symptoms were associated with default mode network connectivity disruption. In summary, default mode connectivity disruption was similar between atypical and amnestic Alzheimer's disease variants, and discriminated Alzheimer's disease from cognitively unimpaired individuals, with decreased posterior and increased anterior connectivity and with disruption more pronounced in younger participants. The ventral default mode network declined over time in atypical Alzheimer's disease, suggesting a shift in default mode network connectivity likely related to tau pathology.

2.
J Forensic Sci ; 65(1): 144-153, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31503337

RESUMEN

Conducted electrical weapons are designed to cause temporary electro-muscular incapacitation (EMI) without significant injury. The objective of this study was to assess the risk and cause of spinal injury due to exposure to a benchtop EMI device. Porcine subjects were exposed to 19 and 40 Hz electrical stimuli for a prolonged duration of 30 sec. X-ray imaging, necropsy, and accelerometry found that lumbosacral spinal fractures occurred in at least 89% of all subjects, regardless of the stimulus group, and were likely caused by musculoskeletal fatigue-related stress in the lumbosacral spine. Spinal fractures occurred in the porcine model at an unusually high rate compared to human. This may be due to both the prolonged duration of electrical stimulation and significant musculoskeletal differences between humans and pigs, which suggests that the porcine model is not a good model of EMI-induced spinal fracture in humans.


Asunto(s)
Lesiones por Armas Conductoras de Energía , Vértebras Lumbares , Fracturas de la Columna Vertebral , Animales , Lesiones por Armas Conductoras de Energía/diagnóstico por imagen , Lesiones por Armas Conductoras de Energía/patología , Estimulación Eléctrica/instrumentación , Medicina Legal , Fracturas Conminutas/diagnóstico por imagen , Fracturas Conminutas/patología , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/lesiones , Vértebras Lumbares/patología , Modelos Animales , Radiografía , Sacro/diagnóstico por imagen , Sacro/lesiones , Sacro/patología , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/patología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA