Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38284654

RESUMEN

The magnetic field dependence of the spin polarization in a photoexcited rigid chromophore-radical conjugate is theoretically investigated. The excitation of the chromophore-radical conjugate often populates the metastable doublet and quartet states formed by the interactions of the unpaired electrons of the triplet chromophore and the radical. The intensities of the +1/2 ↔ - 1/2 transitions of the doublet and quartet manifolds are sensitive to the ratio jω = 3J/ω0 between the triplet-doublet exchange interaction J and the Zeeman energy ω0. It is shown that the analytical expressions of these intensities previously found for the triplet mechanism of the initial spin polarization can be expanded and applied to a broader class of compounds that may have other intersystem crossing pathways of the depopulation of the excited singlet state of the chromophore. It is also shown that the exchange interaction can be evaluated not only by comparing the electron paramagnetic resonance spectra obtained in different microwave frequency bands but also by comparing the data obtained in the same microwave band but with a shift of the frequency of the resonator. The results obtained broaden the potential applications of the previously proposed approach for analyzing the correlation between the exchange coupling and the distance separating the radical and the chromophore spins, as well as the structure of the bridge connecting their fragments.

2.
J Phys Chem Lett ; 15(4): 959-968, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252167

RESUMEN

To study the intersystem crossing (ISC) and the spatial confinement of the triplet excited states of organic chromophores, we prepared a series of Bodipy dimers. We found that the connection position of the two units has a significant effect on the absorption and fluorescence. Singlet oxygen quantum yields of 3.8-12.4% were observed for the dimers, which are independent of solvent polarity. Nanosecond transient absorption spectra indicate the population of long-lived triplet excited states with lifetimes (τT) of 45-454 µs. Pulsed laser-excited time-resolved electron paramagnetic resonance (TREPR) spectra show that the T1 triplet states are essentially delocalized, which is different from the case for the previously reported Bodipy dimers. The TREPR spectra of the triplet states imply that the delocalization over the whole dimer essentially depends on the electron density of the carbon atoms at the connection sites. This property may become a universal rule for controlling the T1 state confinement in multichromophore organic molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA