Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(7): 235, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849625

RESUMEN

In our previous study, the decontamination efficiency of cesium-137 (137Cs) by Napier grass (Pennisetum purpureum Schum.) in the field was shown to be variable and often influenced by natural environmental factors. To elucidate the factors influencing this variable 137Cs-decontamination efficiency, we investigated the influences of soil type and drought stress on Cs accumulation using cesium-133 (133Cs) in Napier grass grown in plastic containers. The experiment was performed using two soil types (Soil A and B) and three different soil moisture conditions: well-watered control (CL), slight drought stress (SD), and moderate drought stress (MD). Overall, our results indicate that soil type and drought have a significant impact on plant growth and 133Cs accumulation in Napier grass. Plant height (PH), tiller number (TN), leaf width (Wleaf), and dry matter weight of aboveground parts (DWabove) and root parts (DWroot) in Soil B were greater than those in Soil A. Drought stress negatively affected chlorophyll fluorescence parameters (maximal quantum efficiency of photosystem (PS) II photochemistry and potential activity of PS II), PH, TN, Wleaf, DWabove, DWroot, and total 133Cs content (TCs), but it had a positive effect on 133Cs concentration. The 133Cs concentration in the aboveground parts (Csabove) was increased by MD approximately 1.62-fold in Soil A and 1.11-fold in Soil B compared to each CL counterpart. The TCs in the aboveground parts (TCsabove) decreased due to drought by approximately 19.9%-39.0% in Soil A and 49.9%-62.7% in Soil B; however, there was no significant effect on TCsabove due to soil type. The results of this study indicate that soil moisture is a key factor in maintaining Napier grass 137Cs-decontamination efficiency.


Asunto(s)
Radioisótopos de Cesio , Sequías , Pennisetum , Contaminantes Radiactivos del Suelo , Radioisótopos de Cesio/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo , Pennisetum/metabolismo , Suelo/química
2.
Environ Monit Assess ; 195(1): 193, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512137

RESUMEN

Radio-cesium (Cs) decontamination efficiency by plants is supposedly affected by environmental conditions. To elucidate the factors influencing the unstable 137Cs-decontamination efficiency, we first examined the influence of drought or soil pH on Cs accumulation using cesium-133 (133Cs) using Napier grass (Pennisetum purpureum Schum.) grown under pot conditions. The experiment was performed on three different conditions with 150 µM 133Cs applied to soil: low pH (L-pH, pH = 5.6 ± 0.0), near-neutral pH (N-pH, pH = 6.6 ± 0.1), and the combination of low pH and drought stress (Drought). Drought stress had prominent negative effects on plant height, aboveground dry matter weight (DWabove), 133Cs concentrations in aboveground or root (Csabove or Csroot) parts, or 133Cs total content in the part aboveground (Cs-T). 133Cs concentration and total content in Drought conditions were reduced by 44.1% and 60.0% aboveground and 63.6% and 66.0% in root parts compared with counterpart normal soil moisture conditions (L-pH), respectively. Conversely, there were no significant effects of soil pH on Csabove, Csroot, or Cs-T in L-pH and N-pH conditions. Chlorophyll fluorescence parameters (Fv/Fm, Fv/F0) and the temperature in leaves were negatively affected by drought stress or soil pH conditions. From our results, drought strongly influenced plant growth and Cs accumulation in plants compared with soil acidity. Therefore, soil moisture appears to be a significant factor in maintaining 137Cs-decontamination efficiency by Napier grass.


Asunto(s)
Cenchrus , Suelo , Sequías , Monitoreo del Ambiente , Cesio , Plantas , Concentración de Iones de Hidrógeno
3.
Inorg Chem ; 60(22): 17103-17113, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34735769

RESUMEN

We describe the gram-scale synthesis of hybrid gold nanoparticles with a shell of conductive polymers. A large-scale synthesis of hexadecyltrimethylammonium bromide (CTAB)-capped gold nanoparticles (AuNP@CTAB) was followed by ligand exchange with conductive polymers based on thiophene in a 10 L reactor equipped with a jacket to ensure a constant temperature of 40 °C and a mechanical stirrer. Slow and controlled reduction of the gold precursors and the presence of small amounts of silver nitrate are revealed to be the critical synthesis variables to obtain particles with a sufficiently narrow size distribution. Batches of approximately 10 g of faceted AuNP@CTAB with tunable average particle sizes from 54 to 85 nm were obtained per batch. Ligand exchange with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) in the same reactor then yielded hybrid Au@PEDOT:PSS nanoparticles. They were used to formulate sinter-free inks for the inkjet printing of conductive structures without the need for a sintering step.

4.
Small ; 16(25): e2000928, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32462772

RESUMEN

Conductive inkjet printing with metal nanoparticles is irreversible because the particles are sintered into a continuous metal film. The resulting structures are difficult to remove or repair and prone to cracking. Here, a hybrid ink is used to obviate the sintering step and print interconnected particle networks that become highly conductive immediately after drying. It is shown that reversible conductive printing is possible on low-cost cardboard samples after applying standard paper industry coats that are adapted in terms of surface energy and porosity. The conductivity of the printed films approaches that of sintered standard inks on the same substrate, but the mobility of the hybrid particle film makes them less sensitive to cracks during bending and folding of the substrate. Damages that occur can be partially repaired by wetting the film such that particle mobility is increased and particles move to bridge insulating gaps in the film. It is demonstrated that the conductive material can be recovered from the cardboard at the end of its life time and be redispersed to recycle the particles and reuse them in conductive inks.

5.
Molecules ; 25(3)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050669

RESUMEN

Soybean (Glycine max) is a major crop cultivated in various regions and consumed globally. The formation of volatile compounds in soybeans is influenced by the cultivar as well as environmental factors, such as the climate and soil in the cultivation areas. This study used gas chromatography-mass spectrometry (GC-MS) combined by headspace solid-phase microextraction (HS-SPME) to analyze the volatile compounds of soybeans cultivated in Korea, China, and North America. The multivariate data analysis of partial least square-discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA) were then applied to GC-MS data sets. The soybeans could be clearly discriminated according to their geographical origins on the PLS-DA score plot. In particular, 25 volatile compounds, including terpenes (limonene, myrcene), esters (ethyl hexanoate, butyl butanoate, butyl prop-2-enoate, butyl acetate, butyl propanoate), aldehydes (nonanal, heptanal, (E)-hex-2-enal, (E)-hept-2-enal, acetaldehyde) were main contributors to the discrimination of soybeans cultivated in China from those cultivated in other regions in the PLS-DA score plot. On the other hand, 15 volatile compounds, such as 2-ethylhexan-1-ol, 2,5-dimethylhexan-2-ol, octanal, and heptanal, were related to Korean soybeans located on the negative PLS 2 axis, whereas 12 volatile compounds, such as oct-1-en-3-ol, heptan-4-ol, butyl butanoate, and butyl acetate, were responsible for North American soybeans. However, the multivariate statistical analysis (PLS-DA) was not able to clearly distinguish soybeans cultivated in Korea, except for those from the Gyeonggi and Kyeongsangbuk provinces.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/estadística & datos numéricos , Glycine max/metabolismo , Compuestos Orgánicos Volátiles/análisis , China , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis de los Mínimos Cuadrados , Análisis Multivariante , América del Norte , República de Corea , Microextracción en Fase Sólida/métodos , Glycine max/química
7.
Micromachines (Basel) ; 15(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38930743

RESUMEN

We propose a novel passive micromixer leveraging STC (split-to-circulate) flow characteristics and analyze its mixing performance comprehensively. Three distinct designs incorporating submerged circular walls were explored to achieve STC flow characteristics, facilitating flow along a convex surface and flow impingement on a concave surface. Across a broad Reynolds number range (0.1 to 80), the present micromixer substantially enhances mixing, with a degree of mixing (DOM) consistently exceeding 0.84. Particularly, the mixing enhancement is prominent within the low and intermediate range of Reynolds numbers (0.1

8.
Environ Pollut ; 342: 123051, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043771

RESUMEN

The microbiome derived from soil associated with plant roots help in plant growth and stress resistance. It exhibits potential benefits for soil remediation and restoration of radioactive-cesium (137Cs)-contaminated soils. However, there is still limited information about the community and diversity of root-associated microbiome in 137Cs-contaminated soil after the Fukushima-Daiichi Nuclear Power Plant (FDNPP) disaster. To address this, a comparative analysis of communities and diversity of root-associated microbiomes was conducted in two field types after the FDNPP disaster. In 2013, we investigated the community and diversity of indigenous root-associated microbiome of napiergrass (Pennisetum purpureum) grown in both grassland and paddy fields of 137Cs-contaminated land-use type within a 30-km radius around the FDNPP. Results showed that the root-associated bacterial communities in napiergrass belonged to 32 phyla, 75 classes, 174 orders, 284 families, and 521 genera, whereas the root-associated fungal communities belonged to 5 phyla, 11 classes, 31 orders, 59 families, and 64 genera. The most frequently observed phylum in both grassland and paddy field was Proteobacteria (47.4% and 55.9%, respectively), followed by Actinobacteriota (23.8% and 27.9%, respectively) and Bacteroidota (10.1% and 11.3%, respectively). The dominant fungal phylum observed in both grassland and paddy field was Basidiomycota (75.9% and 94.2%, respectively), followed by Ascomycota (24.0% and 5.8%, respectively). Land-use type significantly affected the bacterial and fungal communities that colonize the roots of napiergrass. Several 137Cs-tolerant bacterial and fungal taxa were also identified, which may be potentially applied for the phytoremediation of 137Cs-contaminated areas around FDNPP. These findings contribute to a better understanding of the distribution of microbial communities in 137Cs-contaminated lands and their long-term ecosystem benefits for phytoremediation efforts.


Asunto(s)
Desastres , Accidente Nuclear de Fukushima , Microbiota , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Humanos , Contaminantes Radiactivos del Suelo/análisis , Japón , Suelo , Radioisótopos de Cesio/análisis , Plantas de Energía Nuclear , Monitoreo de Radiación/métodos
9.
Waste Manag ; 184: 132-141, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815287

RESUMEN

Future sustainability visions include clean, renewable energy from hydrogen, which can be produced, among other ways, by biomass steam gasification. This study explores strategies addressing the limitations in steam co-gasification of herbaceous biomass, using Monster-TUAT1 rice straw, a genetically modified rice plant with a taller and bigger stalk developed by Tokyo University of Agriculture and Technology (TUAT), and Giant Miscanthus, a promising energy crop, as the feedstock. Firstly, compared with the typical rice straw, the Monster TUAT1 demonstrated superior steam gasification performance with a 1.75 times higher hydrogen gas yield and 27.0 % less tar generation. With a focus on overcoming the challenges posed by high silica content in the Monster TUAT1, co-gasification of it with an energy crop of Giant Miscanthus was performed. However, even under the optimum operation condition (750 °C, steam flowrate: 0.15 g/min), the hydrogen gas yield was only 29.3 mmol/g-C with a tar yield of 27.6 %wt. and a carbon conversion efficiency of 45.9 %, which is deemed unsatisfactory for hydrogen production. Thus, strategies for enhancement were proposed, including the incorporation seaweed biochar with high alkali and alkaline earth species, calcined scallop shell powder, and alkali metal salt into the gasifier. Consequently, the introduction of 10 %wt. of calcined scallop shell resulted in an increase in H2 yield to 37.0 mmol/g-C and 24.3 % CO2 reduction. The addition of alkali metal salt led to 43.9 % increase of H2 product with a 15 %wt. tar yield. The most significant improvement occurred with the introduction of seaweed biochar at 50 %wt., increasing of the hydrogen gas yield to 62.0 mmol/g-C with 86 % of carbon conversion efficiency and tar reduction to 5.5 %. These findings demonstrate the viability of utilizing herbaceous biomass such as rice straw in conjunction with the strategic solutions of co-gasification to overcome constraints in improving hydrogen production.


Asunto(s)
Biomasa , Hidrógeno , Oryza , Vapor , Oryza/genética , Carbón Orgánico
10.
Micromachines (Basel) ; 14(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763958

RESUMEN

A novel passive micromixer based on curly baffles is proposed and optimized through the signal-to-noise analysis of various design parameters. The mixing performance of the proposed design was evaluated across a wide Reynolds number range, from 0.1 to 80. Through the analysis, the most influential parameter was identified, and its value was found to be constant regardless of the mixing mechanism. The optimized design, refined using the signal-to-noise analysis, demonstrated a significant enhancement of mixing performance, particularly in the low Reynolds number range (Re< 10). The design set obtained at the diffusion dominance range shows the highest degree of mixing (DOM) in the low Reynolds number range of Re< 10, while the design set optimized for the convection dominance range exhibited the least pressure drop across the entire Reynolds number spectrum (Re< 80). The present design approach proved to be a practical tool for identifying the most influential design parameter and achieving excellent mixing and pressure drop characteristics. The enhancement is mainly due to the curvature of the most influential design parameter.

11.
Micromachines (Basel) ; 14(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241701

RESUMEN

A novel passive micromixer based on multiple baffles and a submergence scheme was designed, and its mixing performance was simulated over a wide range of Reynolds numbers ranging from 0.1 to 80. The degree of mixing (DOM) at the outlet and the pressure drop between the inlets and outlet were used to assess the mixing performance of the present micromixer. The mixing performance of the present micromixer showed a significant enhancement over a wide range of Reynolds numbers (0.1 ≤ Re ≤ 80). The DOM was further enhanced by using a specific submergence scheme. At low Reynolds numbers (Re < 5), submergence scheme Sub24 produced the highest DOM, approximately 0.57, which was 1.38 times higher than the case with no submergence. This enhancement was due to the fluid flowing from or toward the submerged space, creating strong upward or downward flow at the cross-section. At high Reynolds numbers (Re > 10), the DOM of Sub1234 became the highest, reaching approximately 0.93 for Re = 20, which was 2.75 times higher than the case with no submergence. This enhancement was caused by a large vortex formed across the whole cross-section, causing vigorous mixing between the two fluids. The large vortex dragged the interface between the two fluids along the vortex perimeter, elongating the interface. The amount of submergence was optimized in terms of DOM, and it was independent of the number of mixing units. The optimum submergence values were 90 µm for Sub24 and Re = 1, 100 µm for Sub234 and Re = 5, and 70 µm for Sub1234 and Re = 20.

12.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771534

RESUMEN

We detected a new target quantitative trait locus (QTL) for lodging resistance in rice by analyzing lodging resistance to typhoons (Maysak and Haishen) using a scale from 0 (no prostrating) to 1 (little prostrating or prostrating) to record the resistance score in a Cheongcheong/Nagdong double haploid rice population. Five quantitative trait loci for lodging resistance to typhoons were detected. Among them, qTyM6 and qTyH6 exhibited crucial effects of locus RM3343-RM20318 on chromosome 6, which overlaps with our previous rice lodging studies for the loci qPSLSA6-2, qPSLSB6-5, and qLTI6-2. Within the target locus RM3343-RM20318, 12 related genes belonging to the cytochrome P450 protein family were screened through annotation. Os06g0599200 (OsTyM/Hq6) was selected for further analysis. We observed that the culm and panicle lengths were positively correlated with lodging resistance to typhoons. However, the yield was negatively correlated with lodging resistance to typhoons. The findings of this study improve an understanding of rice breeding, particularly the culm length, early maturing, and heavy panicle varieties, and the mechanisms by which the plant's architecture can resist natural disasters such as typhoons to ensure food safety. These results also provide the insight that lodging resistance in rice may be associated with major traits such as panicle length, culm length, tiller number, and heading date, and thereby improvements in these traits can increase lodging resistance to typhoons. Moreover, rice breeding should focus on maintaining suitable varieties that can withstand the adverse effects of climate change in the future and provide better food security.

13.
Ecotoxicol Environ Saf ; 82: 122-6, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710264

RESUMEN

The present study reports the potential remediation of cesium (Cs) using napiergrass, which produces the largest biomass among the herbaceous plants in hydroponic culture containing stable Cs (Cs-133) at concentrations of 50, 150, 300, 1000, and 3,000 µM using cesium chloride (CsCl), with 0 µM Cs as a control concentration. Plant height was significantly decreased in higher Cs-treated conditions (300, 1000, and 3000 µM Cs) at 7 weeks after treatment (WAT), but tiller numbers tended to increase compared with the control plant. No significant difference was observed in the aboveground dry matter weight in all Cs treatments throughout the study period. Cs content in the roots, leaf blades, and leaf sheaths clearly increased with increasing Cs concentration in the solutions. Cs content in the aboveground parts (leaf blades and leaf sheaths) was consistently higher than in the roots at concentration of 3,000 µM. Total Cs contents in the aboveground parts were 6305 and 26,365 mg kg(-1) at 7WAT in 1000- and 3000-µM Cs treatments, respectively. Mean values of transfer factors (TFs) in the aboveground parts were 50 µM=0.78, 150 µM=1.02, 300 µM=0.86, 1,000 µM=0.68, and 3,000 µM=0.94, respectively at 7WAT. Due to its high Cs content and high TF in the aboveground parts, napiergrass may be a candidate plant with high potential for phytoremediation of Cs from Cs-137-contaminated soil.


Asunto(s)
Cesio/metabolismo , Pennisetum/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , Cesio/toxicidad , Radioisótopos de Cesio/análisis , Radioisótopos de Cesio/metabolismo , Hidroponía , Pennisetum/efectos de los fármacos , Hojas de la Planta/química , Raíces de Plantas/química , Contaminantes Radiactivos del Suelo/toxicidad
14.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888870

RESUMEN

A passive micromixer combined with two different mixing units was designed by submerging planar structures, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The two submerged structures are a Norman window and rectangular baffles. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The amount of submergence was varied from 30 µm to 70 µm, corresponding to 25% to 58% of the micromixer depth. The enhancement of mixing performance is noticeable over a wide range of the Reynolds numbers. When the Reynolds number is 10, the DOM is improved by 182% from that of no submergence case, and the required pressure load is reduced by 44%. The amount of submergence is shown to be optimized in terms of the DOM, and the optimum value is about 40 µm. This corresponds to a third of the micromixer depth. The effects of the submerged structure are most significant in the mixing regime of convection dominance from Re = 5 to 80. In a circular passage along the Norman window, one of the two Dean vortices burst into the submerged space, promoting mixing in the cross-flow direction. The submerged baffles in the semi-circular mixing units generate a vortex behind the baffles that contributes to the mixing enhancement as well as reducing the required pressure load.

15.
Micromachines (Basel) ; 13(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36143998

RESUMEN

A passive micromixer based on the modified Tesla mixing unit was designed by embedding tip clearance above the wedge-shape divider, and its mixing performance was simulated over a wider range of the Reynolds numbers from 0.1 to 80. The mixing performance was evaluated in terms of the degree of mixing (DOM) at the outlet and the required pressure load between inlet and outlet. The height of tip clearance was varied from 40 µm to 80 µm, corresponding to 25% to 33% of the micromixer depth. The numerical results show that the mixing enhancement by the tip clearance is noticeable over a wide range of the Reynolds numbers Re < 50. The height of tip clearance is optimized in terms of the DOM, and the optimum value is roughly h = 60 µm. It corresponds to 33% of the present micromixer depth. The mixing enhancement in the molecular diffusion regime of mixing, Re ≤ 1, is obtained by drag and connection of the interface in the two sub-streams of each Tesla mixing unit. It appears as a wider interface in the tip clearance zone. In the intermediate range of the Reynolds number, 1 < Re ≤ 50, the mixing enhancement is attributed to the interaction of the flow through the tip clearance and the secondary flow in the vortex zone of each Tesla mixing unit. When the Reynolds number is larger than about 50, vortices are formed at various locations and drive the mixing in the modified Tesla micromixer. For the Reynolds number of Re = 80, a pair of vortices is formed around the inlet and outlet of each Tesla mixing unit, and it plays a role as a governing mechanism in the convection-dominant regime of mixing. This vortex pattern is little affected as long as the tip clearance remains smaller than about h = 70 µm. The DOM at the outlet is little enhanced by the presence of tip clearance for the Reynolds numbers Re ≥ 50. The tip clearance contributes to reducing the required pressure load for the same value of the DOM.

16.
Environ Sci Pollut Res Int ; 29(1): 553-563, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34331649

RESUMEN

In Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Acuicultura , Sustancias Húmicas/análisis , Nitrógeno/análisis , Espectrometría de Fluorescencia
17.
Environ Sci Technol ; 45(13): 5668-75, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21649439

RESUMEN

High-frequency in situ measurements at Gosan (Jeju Island, Korea) during November 2007 to December 2008 have been combined with interspecies correlation analysis to estimate national emissions of halogenated compounds (HCs) in East Asia, including the chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF(6)), and other chlorinated and brominated compounds. Our results suggest that overall China is the dominant emitter of HCs in East Asia, however significant emissions are also found in South Korea, Japan and Taiwan for HFC-134a, HFC-143a, C(2)F(6), SF(6), CH(3)CCl(3), and HFC-365mfc. The combined emissions of CFCs, halon-1211, HCFCs, HFCs, PFCs, and SF(6) from all four countries in 2008 are 25.3, 1.6, 135, 42.6, 3.6, and 2.0 kt/a, respectively. They account for approximately 15%, 26%, 29%, 16%, 32%, and 26.5% of global emissions, respectively. Our results show signs that Japan has successfully phased out CFCs and HCFCs in compliance with the Montreal Protocol (MP), Korea has started transitioning from HCFCs to HFCs, while China still significantly consumes HCFCs. Taiwan, while not directly regulated under the MP, is shown to have adapted the use of HFCs. Combined analysis of emission rates and the interspecies correlation matrix presented in this study proves to be a powerful tool for monitoring and diagnosing changes in consumption of HCs in East Asia.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Hidrocarburos Halogenados/análisis , Cromatografía de Gases , Monitoreo del Ambiente/métodos , Asia Oriental , Geografía
18.
Micromachines (Basel) ; 12(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34442607

RESUMEN

A passive micromixer was designed by combining two mixing units: the cross-channel split and recombined (CC-SAR) and a mixing cell with baffles (MC-B). The passive micromixer was comprised of eight mixing slots that corresponded to four combination units; two mixing slots were grouped as one combination unit. The combination of the two mixing units was based on four combination schemes: (A) first mixing unit, (B) first combination unit, (C) first combination module, and (D) second combination module. The statistical significance of the four combination schemes was analyzed using analysis of variance (ANOVA) in terms of the degree of mixing (DOM) and mixing energy cost (MEC). The DOM and MEC were simulated numerically for three Reynolds numbers (Re = 0.5, 2, and 50), representing three mixing regimes. The combination scheme (B), using different mixing units in the first two mixing slots, was significant for Re = 2 and 50. The four combination schemes had little effect on the mixing performance of a passive micromixer operating in the mixing regime of molecular dominance. The combination scheme (B) was generalized to arbitrary mixing slots, and its significance was analyzed for Re = 2 and 50. The general combination scheme meant two different mixing units in two consecutive mixing slots. The numerical simulation results showed that the general combination scheme was statistically significant in the first three combination units for Re = 2, and significant in the first two combination units for Re = 50. The combined micromixer based on the general combination scheme throughout the entire micromixer showed the best mixing performance over a wide range of Reynolds numbers, compared to other micromixers that did not adopt completely the general combination scheme. The most significant enhancement due to the general combination scheme was observed in the transition mixing scheme and was negligible in the molecular dominance scheme. The combination order was less significant after three combination units.

19.
Micromachines (Basel) ; 12(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34945380

RESUMEN

A new passive micro-mixer with mixing units stacked in the cross flow direction was proposed, and its performance was evaluated numerically. The present micro-mixer consisted of eight mixing units. Each mixing unit had four baffles, and they were arranged alternatively in the cross flow and transverse direction. The mixing units were stacked in four different ways: one step, two step, four step, and eight step stacking. A numerical study was carried out for the Reynolds numbers from 0.5 to 50. The corresponding volume flow rate ranged from 6.33 µL/min to 633 µL/min. The mixing performance was analyzed in terms of the degree of mixing (DOM) and relative mixing energy cost (MEC). The numerical results showed a noticeable enhancement of the mixing performance compared with other micromixers. The mixing enhancement was achieved by two flow characteristics: baffle wall impingement by a stream of high concentration and swirl motion within the mixing unit. The baffle wall impingement by a stream of high concentration was observed throughout all Reynolds numbers. The swirl motion inside the mixing unit was observed in the cross flow direction, and became significant as the Reynolds number increased to larger than about five. The eight step stacking showed the best performance for Reynolds numbers larger than about two, while the two step stacking was better for Reynolds numbers less than about two.

20.
Environ Sci Pollut Res Int ; 28(36): 49602-49612, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33939095

RESUMEN

Phytoextraction is widely used to remove environmental pollutants such as heavy metals or radionuclides from soil. It is important to understand how to enhance the accumulation of contaminants by plants. Previously, we found that Napier grass (Pennisetum purpureum Schum.) has the potential to effectively remove Cs (133Cs and 137Cs). In order to enhance the remediation efficiency of Napier grass, we evaluated the effects of low-level K (K), ethylenediaminetetraacetic acid (EDTA), or the combination of low-level K and EDTA (K+EDTA). We also examined the differences in 137Cs decontamination between two cropping years (2018 and 2019). Overall, there were no prominent effects from the K, EDTA, or K+EDTA treatments on plant growth (plant height, tiller number), aboveground biomass, 137Cs concentration, and 137Cs removal ratio (CR) in 2 years. However, the aboveground biomass (P < 0.001), 137Cs concentration (P < 0.001 in 2019 only), and CR (P < 0.001) in plants grown in the first growing period were significantly higher than in plants grown in the second growing period in both years. The mean 137Cs concentration (P < 0.001) and total CR (P < 0.001) per year was significantly greater in 2019 than in 2018. The precipitation amount during the cultivation period in 2019 (1197 mm) was 1.8-fold higher than in 2018 (655 mm). In this study, the K, EDTA, and K+EDTA treatments had less effect plant growth than the natural environmental conditions. To enhance remediation efficiency, soil moisture is one important factor to produce more aboveground biomass to achieve high CR in Napier grass.


Asunto(s)
Pennisetum , Contaminantes del Suelo , Biodegradación Ambiental , Descontaminación , Ácido Edético , Potasio , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA