Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Clin Proteomics ; 21(1): 39, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825675

RESUMEN

BACKGROUND: Avascular necrosis (AVN) is a medical condition characterized by the destruction of bone tissue due to a diminished blood supply. When the rate of tissue destruction surpasses the rate of regeneration, effective treatment becomes challenging, leading to escalating pain, arthritis, and bone fragility as the disease advances. A timely diagnosis is imperative to prevent and initiate proactive treatment for osteonecrosis. We explored the potential of differentially expressed proteins in serum-derived extracellular vesicles (EVs) as biomarkers for AVN of the femoral head in humans. We analyzed the genetic material contained in serum-derived exosomes from patients for early diagnosis, treatment, and prognosis of avascular necrosis. METHODS: EVs were isolated from the serum of both patients with AVN and a control group of healthy individuals. Proteomic analyses were conducted to compare the expression patterns of these proteins by proteomic analysis using LC-MS/MS. RESULTS: Our results show that the levels of IGHV3-23, FN1, VWF, FGB, PRG4, FCGBP, and ZSWIM9 were upregulated in the EVs of patients with AVN compared with those of healthy controls. ELISA results showed that VWF and PRG4 were significantly upregulated in the patients with AVN. CONCLUSIONS: These findings suggest that these EV proteins could serve as promising biomarkers for the early detection and diagnosis of AVN. Early diagnosis is paramount for effective treatment, and the identification of new osteonecrosis biomarkers is essential to facilitate swift diagnosis and proactive intervention. Our study provides novel insights into the identification of AVN-related biomarkers that can enhance clinical management and treatment outcomes.

2.
Biochem Genet ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017286

RESUMEN

Researchers are increasingly interested in cell therapy using mesenchymal stem cells (MSCs) as an alternative remedy for osteoporosis, with fewer side effects. Thus, we isolated and characterized extracellular vesicles (EVs) from human adipose tissue-derived MSCs (hMSCs) and investigated their inhibitory effects on RANKL-induced osteoclast differentiation. Purified EVs were collected from the supernatant of hMSCs by tangential flow filtration. Characterization of EVs included typical evaluation of the size and concentration of EVs by nanoparticle tracking analysis and morphology analysis using transmission electron microscopy. hMSC-EVs inhibited RANKL-induced differentiation of bone marrow-derived macrophages (BMDMs) into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by EV treatment of osteoclasts. In addition, EVs decreased RANKL-induced phosphorylation of p38 and JNK and expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. To elucidate which part of the hMSC-EVs plays a role in the inhibition of osteoclast differentiation, we analyzed miRNA profiles in hMSC-EVs. The results showed that has-miR122-5p was present at significantly high read counts. Overexpression of miR122-5p in BMDMs significantly inhibited RANKL-induced osteoclast differentiation and induced defects in F-actin ring formation and bone resorption. Our results also revealed that RANKL-induced phosphorylation of p38 and JNK and osteoclast-specific gene expression was decreased by miR122-5p transfection, which was consistent with the results of hMSC-EVs. These findings suggest that hMSC-EVs containing miR122-5p inhibit RANKL-induced osteoclast differentiation via the downregulation of molecular mechanisms and could be a preventive candidate for destructive bone diseases.

3.
Ecotoxicol Environ Saf ; 262: 115342, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567104

RESUMEN

Waste plastics are degraded into microplastics (MPs), which are easily accumulated in the human body through digestive tracts, via the food chain. Alcohol is a widely consumed chemical throughout the world with the ability to alter the intestinal barrier. For this reason, this study was aimed to investigate exact relevance between alcohol consumption and organ distributions of MPs in an ethanol feeding animal model characterized by disrupted intestinal mucosal barriers. In this study, C57BL/6 mice were separated into control, control + MP, ethanol (EtOH), and EtOH + MP groups. Mice in the EtOH group ingested a Lieber-DeCarli diet containing EtOH. Mice in the MP groups ingested 0.1 mg/kg fluorophore polymerized polystyrene microplastics via oral gavage polystyrene MPs via oral gavage. The EtOH + MP group showed higher MP accumulation in the liver than the control + MP group. The same pattern was observed in the intestines, spleen, and brain. This pattern was more prominent in the intestines, with the EtOH + MP group showing the most severe damage due to EtOH ingestion. This result suggests that the intestinal mucosa disruption caused by EtOH ingestion exacerbates MP accumulation in the organs. Moreover, hepatic steatosis was more severe in the EtOH + MP group than in the EtOH group, suggesting the secondary manifestation mediated by MP accumulation. This study reports a novel MP accumulation pattern in the body by providing novel insights into alcohol-induced gut permeability and microplastics toxicity from the perspective of gut-liver axis.

4.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239816

RESUMEN

Currently, polypropylene (PP) is used in various products, thus leading to high daily exposure in humans. Thus, it is necessary to evaluate the toxicological effects, biodistribution, and accumulation of PP microplastics in the human body. In this study, administration of two particle sizes of PP microplastics (approximately 5 and 10-50 µm) did not lead to any significant changes in several toxicological evaluation parameters, including body weight and pathological examination, compared with the control group in ICR mice. Therefore, the approximate lethal dose and no-observed-adverse-effect level of PP microplastics in ICR mice were established as ≥2000 mg/kg. Furthermore, we manufactured cyanine 5.5 carboxylic acid (Cy5.5-COOH)-labeled fragmented PP microplastics to monitor real-time in vivo biodistribution. After oral administration of the Cy5.5-COOH-labeled microplastics to the mice, most of the PP microplastics were detected in the gastrointestinal tract and observed to be out of the body after 24 h in IVIS Spectrum CT. Therefore, this study provides a new insight into the short-term toxicity, distribution, and accumulation of PP microplastics in mammals.


Asunto(s)
Polipropilenos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Polipropilenos/toxicidad , Microplásticos/toxicidad , Plásticos/toxicidad , Ratones Endogámicos ICR , Distribución Tisular , Contaminantes Químicos del Agua/toxicidad , Mamíferos
5.
Am J Pathol ; 191(9): 1550-1563, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34126083

RESUMEN

Despite the increasing clinical importance of nonalcoholic fatty liver disease (NAFLD), little is known about its underlying pathogenesis or specific treatment. The senescence marker protein 30 (SMP30), which regulates the biosynthesis of vitamin C (VC) in many mammals, except primates and humans, was recently recognized as a gluconolactonase. However, the precise relation between VC and lipid metabolism in NAFLD is not completely understood. Therefore, this study aimed to clearly reveal the role of VC in NAFLD progression. SMP30 knockout (KO) mice were used as a VC-deficient mouse model. To investigate the precise role of VC on lipid metabolism, 13- to 15-week-old SMP30 KO mice and wild-type mice fed a 60% high-fat diet were exposed to tap water or VC-containing water (1.5 g/L) ad libitum for 11 weeks. Primary mouse hepatocytes isolated from the SMP30 KO and wild-type mice were used to demonstrate the relation between VC and lipid metabolism in hepatocytes. Long-term VC deficiency significantly suppressed the progression of simple steatosis. The high-fat diet-fed VC-deficient SMP30 KO mice exhibited impaired sterol regulatory element-binding protein-1c activation because of excessive cholesterol accumulation in hepatocytes. Long-term VC deficiency inhibits de novo lipogenesis through impaired sterol regulatory element-binding protein-1c activation.


Asunto(s)
Deficiencia de Ácido Ascórbico/metabolismo , Hepatocitos/metabolismo , Lipogénesis/fisiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Progresión de la Enfermedad , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Noqueados
6.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809214

RESUMEN

Extracellular vesicles (EVs) are generated and secreted by cells into the circulatory system. Stem cell-derived EVs have a therapeutic effect similar to that of stem cells and are considered an alternative method for cell therapy. Accordingly, research on the characteristics of EVs is emerging. EVs were isolated from human epidural fat-derived mesenchymal stem cells (MSCs) and human fibroblast culture media by ultracentrifugation. The characterization of EVs involved the typical evaluation of cluster of differentiation (CD antigens) marker expression by fluorescence-activated cell sorting, size analysis with dynamic laser scattering, and morphology analysis with transmission electron microscopy. Lastly, the secreted levels of cytokines and chemokines in EVs were determined by a cytokine assay. The isolated EVs had a typical size of approximately 30-200 nm, and the surface proteins CD9 and CD81 were expressed on human epidural fat MSCs and human fibroblast cells. The secreted levels of cytokines and chemokines were compared between human epidural fat MSC-derived EVs and human fibroblast-derived EVs. Human epidural fat MSC-derived EVs showed anti-inflammatory effects and promoted macrophage polarization. In this study, we demonstrated for the first time that human epidural fat MSC-derived EVs exhibit inflammatory suppressive potency relative to human fibroblast-derived EVs, which may be useful for the treatment of inflammation-related diseases.


Asunto(s)
Diferenciación Celular/genética , Vesículas Extracelulares/genética , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Polaridad Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Quimiocinas/genética , Citocinas/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/terapia , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo
7.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948463

RESUMEN

Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.


Asunto(s)
Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo , Traumatismos de la Médula Espinal/terapia , Animales , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Trasplante de Células Madre Mesenquimatosas
8.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576126

RESUMEN

Stress is the physical and psychological tension felt by an individual while adapting to difficult situations. Stress is known to alter the expression of stress hormones and cause neuroinflammation in the brain. In this study, miRNAs in serum-derived neuronal exosomes (nEVs) were analyzed to determine whether differentially expressed miRNAs could be used as biomarkers of acute stress. Specifically, acute severe stress was induced in Sprague-Dawley rats via electric foot-shock treatment. In this acute severe-stress model, time-dependent changes in the expression levels of stress hormones and neuroinflammation-related markers were analyzed. In addition, nEVs were isolated from the serum of control mice and stressed mice at various time points to determine when brain damage was most prominent; this was found to be 7 days after foot shock. Next-generation sequencing was performed to compare neuronal exosomal miRNA at day 7 with the neuronal exosomal miRNA of the control group. From this analysis, 13 upregulated and 11 downregulated miRNAs were detected. These results show that specific miRNAs are differentially expressed in nEVs from an acute severe-stress animal model. Thus, this study provides novel insights into potential stress-related biomarkers.


Asunto(s)
Exosomas/metabolismo , MicroARNs/sangre , MicroARNs/genética , Neuronas/metabolismo , Estrés Psicológico/sangre , Estrés Psicológico/genética , Enfermedad Aguda , Animales , Biomarcadores/sangre , Exosomas/ultraestructura , Ontología de Genes , Hormonas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Masculino , Ratas Sprague-Dawley
9.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098266

RESUMEN

An increased incidence of myocardial infarction (MI) has recently emerged as the cause of cardiovascular morbidity and mortality worldwide. In this study, cardiac function was investigated in a rat myocardial ischemia/reperfusion (I/R) model using echocardiography. Metformin administration significantly increased ejection fraction and fractional shortening values on Days 3 and 7 when MI occurred, indicating that metformin improved left ventricular systolic function. In the Sham + MET and MI + MET groups, the E' value was significantly different up to Day 3 but not at Day 7. This may mean that left ventricular diastolic function was effectively restored to some extent by Day 7 when metformin was administered. These results suggest that diastolic dysfunction, assessed by echocardiography, does not recover in the early phase of ischemic reperfusion injury in the rat myocardial I/R model. However, administering metformin resulted in recovery in the early phase of ischemic reperfusion injury in this model. Further gene expression profiling of left ventricle tissues revealed that the metformin-treated group had notably attenuated immune and inflammatory profiles. To sum up, a rat myocardial I/R injury model and ultrasound-based assessment of left ventricular systolic and diastolic function can be used in translational research and for the development of new heart failure-related drugs, in addition to evaluating the potential of metformin to improve left ventricular (LV) diastolic function.


Asunto(s)
Ecocardiografía , Regulación de la Expresión Génica/efectos de los fármacos , Metformina/farmacología , Daño por Reperfusión Miocárdica , Disfunción Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Masculino , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/metabolismo
10.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967328

RESUMEN

The incidence of myocardial infarction, among the causes of cardiovascular morbidity and mortality, is increasing globally. In this study, left ventricular (LV) dysfunction, including LV systolic and diastolic function, was investigated in a rat myocardial ischemia/reperfusion injury model with echocardiography. The homoisoflavanone sappanone A is known for its anti-inflammatory effects. Using echocardiography, we found that sappanone A administration significantly improved LV systolic and diastolic function in a rat myocardial ischemia/reperfusion injury model, especially in the early phase development of myocardial infarction. Based on myocardial infarct size, serum cardiac marker assay, and histopathological evaluation, sappanone A showed higher efficacy at the doses used in our experiments than curcumin and was evaluated for its potential to improve LV function.


Asunto(s)
Isoflavonas/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Disfunción Ventricular Izquierda/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Sprague-Dawley , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
11.
Mol Cell Biochem ; 391(1-2): 175-82, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24604672

RESUMEN

ENA-actimineral resource A (ENA-A) is an alkaline mineral water and has a few biological activities such as antioxidant activity. The aim of this study was to examine the effects of ENA-A on lifespan in mice using senescence marker protein-30 knockout mice. The present study had groups of 18-week-old mice (n = 24), 26-week-old mice (n = 12), and 46-week-old mice (n = 20). Each differently aged mice group was divided into three subgroups: a control group, a 5 % ENA-A-treated group, and a 10 % ENA-A-treated group. Mice in the 18-week-old group were treated with vitamin C drinking water 1.5 g/L. However, the mice in the 26-week-old and 46-week-old groups were not treated with vitamin C. The experiments were done for 18 weeks. All vitamin C-treated mice were alive at week 18 (100% survival rate). In the non-vitamin C group, the 10% ENA-A-treated mice were alive at week 18. The control and 5% ENA-A-treated mice died by week 15. As expected, vitamin C was not detected in the non-vitamin C-treated group. However, vitamin C levels were increased in an ENA-A dose-dependent manner in the vitamin C-treated group. In the TUNEL assay, a number of positive hepatocytes significantly decreased in an ENA-A dose-dependent manner. Periodic acid Schiff positive hepatocytes were significantly increased in an ENA-A dose-dependent manner. In addition, the expression level of CuZnSOD was increased by the ENA-A treatment. These data suggest that the intake of ENA-A has a critical role in the anti-aging mechanism and could be applied toward the lifespans of humans.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Unión al Calcio/deficiencia , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Longevidad/efectos de los fármacos , Minerales/farmacología , Preparaciones de Plantas/farmacología , Animales , Apoptosis/efectos de los fármacos , Ácido Ascórbico/sangre , Deficiencia de Ácido Ascórbico/enzimología , Deficiencia de Ácido Ascórbico/patología , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/patología , Proteínas de Unión al Calcio/metabolismo , Glucógeno/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Ratones Noqueados , Coloración y Etiquetado , Superóxido Dismutasa/metabolismo , Análisis de Supervivencia
12.
Pathol Int ; 64(8): 388-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25143127

RESUMEN

Various attempts have been made to find treatments for Duchenne muscular dystrophy (DMD) patients. Exon skipping is one of the promising technologies for DMD treatment by restoring dystropin protein, which is one of the muscle components. It is well known that losartan, an angiotensin II type1 receptor blocker, promotes muscle regeneration and differentiation by lowering the level of transforming growth factor-beta1 signaling. In this study, we illustrated the combined effects of exon skipping and losartan on skeletal muscle of mdx mice. We supplied mdx mice with losartan for 2 weeks before exon skipping treatment. The losartan with the exon skipping group showed less expression of myf5 than the losartan treated group. Also the losartan with exon skipping group recovered normal muscle architecture, in contrast to the losartan group which still showed many central nuclei. However, the exon skipping efficiency and the restoration of dystrophin protein were lower in the losartan with exon skipping group compared to the exon skipping group. We reveal that losartan promotes muscle regeneration and shortens the time taken to restore normal muscle structure when combined with exon skipping. However, combined treatment of exon skipping and losartan decreases the restoration of dystrophin protein meaning decrease of exon skipping efficiency.


Asunto(s)
Losartán/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología
13.
Int J Mol Sci ; 15(3): 4126-41, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24608925

RESUMEN

Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for α-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-ß1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-ß1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection.


Asunto(s)
Etanol/toxicidad , Hígado/efectos de los fármacos , Mutación , Proteínas del Núcleo Viral/genética , Actinas/metabolismo , Animales , Depresores del Sistema Nervioso Central/toxicidad , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inmunohistoquímica , Queratina-18/metabolismo , Queratina-8/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/genética , Hepatopatías/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Músculo Liso/química , Necrosis/inducido químicamente , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas del Núcleo Viral/metabolismo
14.
Microorganisms ; 12(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38258014

RESUMEN

Excessive reactive oxygen species production can detrimentally impact skin cell physiology, resulting in cell growth arrest, melanogenesis, and aging. Recent clinical studies have found that lactic acid bacteria have a special effect directly or indirectly on skin organs, but the exact mechanism has not been elucidated. In this study, we investigated the mechanisms underlying the antioxidant protective effect and the inhibitory effect on melanin synthesis of Lactobacillus kunkeei culture supernatant (CSK), isolated from Apis mellifera Linnaeus (the Western honeybee). CSK exhibited notable efficacy in promoting cell migration and wound healing under oxidative stress, surpassing the performance of other strains. CSK pretreatment significantly upregulated the expression of Nrf2/HO-1 (nuclear factor erythroid 2-related factor 2/heme oxygenase-1), a key player in cellular defenses against oxidative stress, relative to the control H2O2-treated cells. The DCF-DA (dichloro-dihydro-fluorescein diacetate) assay results confirmed that CSK's ability to enhance Nrf2 and HO-1 expression aligns with its robust ability to remove H2O2-induced reactive oxygen species. Furthermore, CSK upregulated MAPK (mitogen-activated protein kinase) phosphorylation, an upstream signal for HO-1 expression, and MAPK inhibitors compromised the wound-healing effect of CSK. Additionally, CSK exhibited inhibitory effects on melanin synthesis, downregulating melanogenesis-related genes in B16F10 cells. Thus, the present study demonstrated that CSK exhibited antioxidant effects by activating the Nrf2/HO-1 pathway through MAPK phosphorylation, thereby restoring cell migration and demonstrating inhibitory effects on melanin production. These findings emphasize the antioxidant and antimelanogenic potential of CSK, suggesting its potential use as a therapeutic agent, promoting wound healing, and as an active ingredient in skin-lightening cosmetics.

15.
FEBS Open Bio ; 13(6): 1027-1040, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36934312

RESUMEN

High-fat diets (HFD) adversely affect organ systems. Several studies have examined HFD-related disorders in animals but only in a few organs and time points. Herein, we evaluated disease development with time-dependent HFD-induced pathological, cardiovascular, and morphological changes in rabbits with lipid metabolism similar to that in humans for 9 weeks. The body weights and waist ratio of the HFD group were higher than those in the control group. HFD significantly increased the total cholesterol, low-density lipoprotein, high-density lipoprotein, and phospholipid levels after 3 weeks. Liver enzyme levels increased with hepatomegaly, steatosis, and fibrosis after 3 or 6 weeks. RBCs and hemoglobin decreased, while platelets increased in the HFD group with atherosclerosis and inflammatory cell infiltration in the aorta after 6 weeks. Ejection fraction and fractional shortening values decreased in the HFD group after 9 weeks. Creatinine increased with glomerulosclerosis in the kidneys of the HFD groups after 3 weeks, indicating renal dysfunction. Lipid accumulation was found in the pancreas after 9 weeks. Lipid accumulation and hypertrophy were observed in the adrenal glands after 3 weeks. Overall, our findings provide global reference data on the time-dependent effects of HFD on the body and may serve as a guide for future HFD risk prevention.


Asunto(s)
Aterosclerosis , Hígado Graso , Hiperlipidemias , Humanos , Animales , Conejos , Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/etiología , Hiperlipidemias/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Lípidos
16.
J Ginseng Res ; 47(3): 429-439, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252282

RESUMEN

Background: The incidence and clinical importance of nonalcoholic fatty liver disease (NAFLD) has emerged. However, effective therapeutic strategies for NAFLD have yet to be found. Panax ginseng (P. ginseng) is a traditional herb in Eastern Asia with therapeutic effects in many chronic disorders. However, the precise effects of ginseng extract on NAFLD are currently unknown. In present study, the therapeutic effects of Rg3-enriched red ginseng extract (Rg3-RGE) on the progression of NAFLD were explored. Methods: Twelve-week-old C57BL/6 male mice were fed a chow or western diet supplemented with high sugar water solution with or without Rg3-RGE. Histopathology, immunohistochemistry, immunofluorescence, serum biochemistry, western blot analysis, and quantitative RT-PCR were used for in vivo experiment. Conditionally immortalized human glomerular endothelial cell (CiGEnC) and primary liver sinusoidal endothelial cells (LSECs) were used for in vitro experiments. Results: Eight weeks of Rg3-RGE treatment significantly attenuated the inflammatory lesions of NAFLD. Furthermore, Rg3-RGE inhibited the inflammatory infiltrate in liver parenchyma and the expression of adhesive molecules to LSECs. Moreover, the Rg3-RGE exhibited similar patterns on the in vitro assays. Conclusion: The results demonstrate that Rg3-RGE treatment ameliorates NAFLD progression by inhibiting chemotaxis activities in LSECs.

17.
Bioengineering (Basel) ; 10(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38002434

RESUMEN

The complex process of bone regeneration is influenced by factors such as inflammatory responses, tissue interactions, and progenitor cells. Currently, multiple traumas can interfere with fracture healing, causing the prolonging or failure of healing. In these cases, bone grafting is the most effective treatment. However, there are several drawbacks, such as morbidity at the donor site and availability of suitable materials. Advantages have been provided in this field by a variety of stem cell types. Adipose-derived stem cells (ASCs) show promise. In the radiological examination of this study, it was confirmed that the C/S group showed faster regeneration than the other groups, and Micro-CT also showed that the degree of bone formation in the defect area was highest in the C/S group. Compared to the control group, the change in cortical bone area in the defect area decreased in the sham group (0.874), while it slightly increased in the C/S group (1.027). An increase in relative vascularity indicates a decrease in overall bone density, but a weak depression filled with fibrous tissue was observed outside the compact bone. It was confirmed that newly formed cortical bone showed a slight difference in bone density compared to surrounding normal bone tissue due to increased distribution of cortical bone. In this study, we investigated the effect of bone regeneration by ADMSCs measured by radiation and pathological effects. These data can ultimately be applied to humans with important clinical applications in various bone diseases, regenerative, and early stages of formative differentiation.

18.
Int J Exp Pathol ; 93(5): 332-40, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22974214

RESUMEN

Senescence marker protein (SMP) 30 knockout (KO) mice display symptoms of scurvy, including spontaneous bone fractures, and this was considered to be induced by a failure of collagen synthesis owing to vitamin C deficiency. However, low bone mineral density is also known to be associated with spontaneous bone fracture. Therefore, we investigated the effects of vitamin C deficiency on the balance between osteoblasts and osteoclasts in SMP30 KO mice as evidenced by histopathology. All mice were fed a vitamin C-free diet, and only one group (KV) mice were given water containing 1.5 g/l of vitamin C, whereas wild-type (WT) and KO mice were given normal drinking tap water without vitamin C for 16 weeks. After 16 weeks, all femur samples were removed for histopathological examination. The femurs of KO mice showed significantly reduced bone area and decreased number of osteoblasts compared with those of WT mice and KV mice. KO mice also exhibited the lowest level of alkaline phosphatase (ALP) expression in their femurs. However, KO mice showed the most elevated expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Moreover, KO mice had the strongest peroxisome proliferator-activated receptor (PPAR)-γ expression level in their osteoblasts and the highest number of TUNEL-positive bone marrow cells. Therefore, we concluded that vitamin C deficiency plays an important role in spontaneous bone fracture by inhibiting osteoblast differentiation and promoting transition of osteoblasts to adipocytes, and this could in turn be related to the increased PPAR-γ expression.


Asunto(s)
Envejecimiento/metabolismo , Deficiencia de Ácido Ascórbico/complicaciones , Resorción Ósea/etiología , Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , PPAR gamma/biosíntesis , Animales , Deficiencia de Ácido Ascórbico/metabolismo , Deficiencia de Ácido Ascórbico/patología , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Diferenciación Celular , Fémur , Fracturas Óseas/etiología , Fracturas Óseas/metabolismo , Fracturas Óseas/patología , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteoclastos/citología
19.
Polymers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683896

RESUMEN

The increased use of plastics has led to severe environmental pollution, particularly by microplastics-plastic particles 5 mm or less in diameter. These particles are formed by environmental factors such as weathering and ultraviolet irradiation, thereby making environmental pollution worse. This environmental pollution intensifies human exposure to microplastics via food chains. Despite potential negative effects, few toxicity assessments on microplastics are available. In this study, two sizes of polytetrafluoroethylene (PTFE) microplastics, approximately 5 µm and 10-50 µm, were manufactured and used for single and four-week repeated toxicity and pharmacokinetic studies. Toxicological effects were comprehensively evaluated with clinical signs, body weight, food and water consumption, necropsy findings, and histopathological and clinical-pathological examinations. Blood collected at 15, 30 60, and 120 min after a single administration of microplastics were analyzed by Raman spectroscopy. In the toxicity evaluation of single and four-week repeated oral administration of PTFE microplastics, no toxic changes were observed. Therefore, the lethal dose 50 (LD50) and no-observed-adverse-effect-level (NOAEL) of PTFE microplastics in ICR mice were established as 2000 mg/kg or more. PTFE microplastics were not detected in blood, so pharmacokinetic parameters could not be calculated. This study provides new insight into the long-term toxicity and pharmacokinetics of PTFE microplastics.

20.
Nutrients ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35683997

RESUMEN

In previous studies, the increasing clinical importance of nonalcoholic fatty liver disease (NAFLD) has been recognized. However, the specific therapeutic strategies or drugs have not been discovered. Vitamin C is a water-soluble antioxidant and is a cofactor in many important biosynthesis pathways. Recently, many researchers have reported that the mega-dose vitamin C treatment had positive effects on various diseases. However, the precise relationship between mega-dose vitamin C and NAFLD has not been completely elucidated. This study has been designed to discover the effects of mega-dose vitamin C on the progression of NAFLD. Twelve-week-old wild-type C57BL6 mice were fed chow diets and high-fat and high-fructose diet (fast-food diet) ad libitum for 11 weeks with or without of vitamin C treatment. Vitamin C was administered in the drinking water (1.5 g/L). In this study, 11 weeks of the mega-dose vitamin C treatment significantly suppressed the development of nonalcoholic steatohepatitis (NASH) independently of the catabolic process. Vitamin C supplements in fast-food diet fed mice significantly decreased diet ingestion and increased water intake. Histopathological analysis revealed that the mice fed a fast-food diet with vitamin C water had a mild renal injury suggesting osmotic nephrosis due to fructose-mediated purine derivatives. These data suggest that the mega-dose vitamin C treatment suppresses high-fructose-diet-mediated NAFLD progression by decreasing diet ingestion and increasing water intake.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ácido Ascórbico/metabolismo , Dieta , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fructosa , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Vitaminas/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA