Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917353

RESUMEN

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virales , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Virus de Epstein-Barr/prevención & control , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/inmunología , Humanos , Fusión de Membrana , Ratones , Proteínas Virales/inmunología
2.
J Med Virol ; 96(4): e29595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587217

RESUMEN

Systemic autoimmune diseases (SADs) are a growing spectrum of autoimmune disorders that commonly affect multiple organs. The role of Epstein-Barr virus (EBV) infection or reactivation as a trigger for the initiation and progression of SADs has been established, while the relationship between EBV envelope glycoproteins and SADs remains unclear. Here, we assessed the levels of IgG, IgA, and IgM against EBV glycoproteins (including gp350, gp42, gHgL, and gB) in serum samples obtained from patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), and found that RA and SLE patients exhibited a statistically significant increase in the levels of 8 and 11 glycoprotein antibodies, respectively, compared to healthy controls (p < 0.05). The LASSO model identified four factors as significant diagnostic markers for RA: gp350 IgG, gp350 IgA, gHgL IgM, and gp42 IgA; whereas for SLE it included gp350 IgG, gp350 IgA, gHgL IgA, and gp42 IgM. Combining these selected biomarkers yielded an area under the curve (AUC) of 0.749 for RA and 0.843 for SLE. We subsequently quantified the levels of autoantibodies associated with SADs in mouse sera following immunization with gp350. Remarkably, none of the tested autoantibody levels exhibited statistically significant alterations. Elevation of glycoprotein antibody concentration suggests that Epstein-Barr virus reactivation and replication occurred in SADs patients, potentially serving as a promising biomarker for diagnosing SADs. Moreover, the absence of cross-reactivity between gp350 antibodies and SADs-associated autoantigens indicates the safety profile of a vaccine based on gp350 antigen.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Infecciones por Virus de Epstein-Barr , Lupus Eritematoso Sistémico , Humanos , Animales , Ratones , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Anticuerpos Antivirales , Artritis Reumatoide/complicaciones , Glicoproteínas , Enfermedades Autoinmunes/complicaciones , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina M
3.
J Virol ; 96(13): e0038322, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35699445

RESUMEN

Despite the rapid deployment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the emergence of SARS-CoV-2 variants and reports of their immune evasion characteristics have led to an urgent need for novel vaccines that confer potent cross-protective immunity. In this study, we constructed three different SARS-CoV-2 spike S1-conjugated nanoparticle vaccine candidates that exhibited high structural homogeneity and stability. Notably, these vaccines elicited up to 50-times-higher neutralizing antibody titers than the S1 monomer in mice. Crucially, it was found that the S1-conjugated nanoparticle vaccine could elicit comparable levels of neutralizing antibodies against wild-type or emerging variant SARS-CoV-2, with cross-reactivity to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), the effect of which could be further enhanced using our designed nanoparticles. Our results indicate that the S1-conjugated nanoparticles are promising vaccine candidates with the potential to elicit potent and cross-reactive immunity against not only wild-type SARS-CoV-2, but also its variants of concern, variants of interest, and even other pathogenic betacoronaviruses. IMPORTANCE The emergence of SARS-CoV-2 variants led to an urgent demand for a broadly effective vaccine against the threat of variant infection. The spike protein S1-based nanoparticle designed in our study could elicit a comprehensive humoral response toward different SARS-CoV-2 variants of concern and variants of interest and will be helpful to combat COVID-19 globally.


Asunto(s)
Formación de Anticuerpos , Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Ratones , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
J Virol ; 96(9): e0033622, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404082

RESUMEN

Epstein-Barr virus (EBV), the first identified human tumor virus, is etiologically associated with various kinds of malignant and benign diseases, accounting for 265,000 cancer incident cases and 164,000 cancer deaths in 2017. EBV prophylactic vaccine development has been gp350 centered for several decades. However, clinical studies show that gp350-centered vaccines fail to prevent EBV infection. Advances in the EBV infection mechanisms shed light on gB and gHgL, the two key components of the infection apparatus. In this study, for the first time, we utilized recombinant vesicular stomatitis virus (VSV) to display EBV gB (VSV-ΔG-gB/gB-G) or gHgL (VSV-ΔG-gHgL). In vitro studies confirmed successful virion production and glycoprotein presentation on the virion surface. In mouse models, VSV-ΔG-gB/gB-G or VSV-ΔG-gHgL elicited potent humoral responses. Neutralizing antibodies elicited by VSV-ΔG-gB/gB-G were prone to prevent B cell infection, while those elicited by VSV-ΔG-gHgL were prone to prevent epithelial cell infection. Combinatorial vaccination yields an additive effect. The ratio of endpoint neutralizing antibody titers to the endpoint total IgG titers immunized with VSV-ΔG-gHgL was approximately 1. The ratio of IgG1/IgG2a after VSV-ΔG-gB/gB-G immunization was approximately 1 in a dose-dependent, adjuvant-independent manner. Taken together, VSV-based EBV vaccines can elicit a high ratio of epithelial and B lymphocyte neutralizing antibodies, implying their unique potential as EBV prophylactic vaccine candidates. IMPORTANCE Epstein-Barr virus (EBV), one of the most common human viruses and the first identified human oncogenic virus, accounted for 265,000 cancer incident cases and 164,000 cancer deaths in 2017 as well as millions of nonmalignant disease cases. So far, no prophylactic vaccine is available to prevent EBV infection. In this study, for the first time, we reported the VSV-based EBV vaccines presenting two key components of the EBV infection apparatus, gB and gHgL. We confirmed potent antigen-specific antibody generation; these antibodies prevented EBV from infecting epithelial cells and B cells, and the IgG1/IgG2a ratio indicated balanced humoral-cellular responses. Taken together, we suggest VSV-based EBV vaccines are potent prophylactic candidates for clinical studies and help eradicate numerous EBV-associated malignant and benign diseases.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Vesiculovirus , Vacunas Virales , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Infecciones por Virus de Epstein-Barr/prevención & control , Herpesvirus Humano 4/fisiología , Inmunidad Humoral , Inmunoglobulina G/sangre , Ratones , Vesiculovirus/genética , Vacunas Virales/inmunología
5.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658348

RESUMEN

Glycoprotein B (gB) is an essential fusion protein for the Epstein-Barr virus (EBV) infection of both B cells and epithelial cells and is thus a promising target antigen for a prophylactic vaccine to prevent or reduce EBV-associated disease. T cell responses play key roles in the control of persistent EBV infection and in the efficacy of a vaccine. However, to date, T cell responses to gB have been characterized for only a limited number of human leukocyte antigen (HLA) alleles. Here, we screened gB T cell epitopes in 23 healthy EBV carriers and ten patients with nasopharyngeal cancer (NPC) using a peptide library spanning the entire gB sequence. We identified twelve novel epitopes in the context of seven new HLA restrictions that are common in Asian populations. Two epitopes, gB214-223 and gB840-849, restricted by HLA-B*58:01 and B*38:02, respectively, elicited specific CD8+ T cell responses to inhibit EBV-driven B cell transformation. Interestingly, gB-specific CD8+ T cells were more frequent in healthy viral carriers with EBV reactivation than in those without EBV reactivation, indicating that EBV reactivation in vivo stimulates both humoral (VCA-gp125-IgA) and cellular responses to gB. We further found that most gB epitopes are conserved among different EBV strains. Our study broadens the diversity and HLA restrictions of gB epitopes and suggests that gB is a common target of T cell responses in healthy viral carriers with EBV reactivation. In particular, the precisely mapped and conserved gB epitopes provide valuable information for prophylactic vaccine development.ImportanceT cells are crucial for the control of persistent EBV infection and the development of EBV-associated diseases. The EBV gB protein is essential for virus entry into B cells and epithelial cells and is thus a target antigen for vaccine development. Understanding T cell responses to gB is important for subunit vaccine design. Herein, we comprehensively characterized T cell responses to full-length gB. Our results expand the available gB epitopes and HLA restrictions, particularly those common in Asian populations. Furthermore, we showed that gB-specific CD8+ T cells inhibit B cell transformation ex vivo and that gB-specific CD8+ T cell responses in vivo may be associated with intermittent EBV reactivation in asymptomatic viral carriers. These gB epitopes are highly conserved among geographically separated EBV strains. Precisely mapped and conserved T cell epitopes may contribute to immune monitoring and to the development of a gB subunit vaccine.

6.
Nano Lett ; 21(6): 2476-2486, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33683126

RESUMEN

Epstein-Barr virus (EBV) infection is a global health concern infecting over 90% of the population. However, there is no currently available vaccine. EBV primarily infects B cells, where the major glycoprotein 350 (gp350) is the main target of neutralizing antibodies. Given the advancement of nanoparticle vaccines, we describe rationally designed vaccine modalities presenting 60 copies of gp350 on self-assembled nanoparticles in a repetitive array. In a mouse model, gp350s on lumazine synthase (LS) and I3-01 adjuvanted with MF59 or aluminum hydroxide (Alhydrogel) elicited over 65- to 133-fold higher neutralizing antibody titers than the corresponding gp350 monomer to EBV. Furthermore, immunization with gp350D123-LS and gp350D123-I3-01 vaccine induced a Th2-biased response. For the nonhuman primate model, gp350D123-LS in MF59 elicited higher titers of total IgG and neutralizing antibodies than the monomeric gp350D123. Overall, these results support gp350D123-based nanoparticle vaccine design as a promising vaccine candidate for potent protection against EBV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Nanopartículas , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr/prevención & control , Herpesvirus Humano 4 , Inmunización , Ratones
7.
Microb Pathog ; 127: 131-137, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30508624

RESUMEN

Newcastle disease (ND), affecting over 250 bird species, is caused by the Newcastle disease virus (NDV). ND is one of the leading causes of morbidity and mortality in pigeons. Most studies investigating NDV in pigeons have focused on the epidemiology and pathogenicity of the virus. However, the host immune responses in pigeons infected with NDVs remains largely unclear. In this study, we investigated the host immune responses in pigeons infected with two NDV stains, a pigeon paramyxovirus type 1(PPMV-1) strain, GZH14, and a genotype II virus, KP08. Although no mortality was observed upon infection with either virus, obvious neurological effects were observed in the GZH14-infected pigeons but not in the KP08-infected pigeons. Both viruses could replicate in the examined tissues, namely brain, lung, spleen, trachea, kidney, and bursa of Fabricius. The expression level of RIG-I, IL-6, IL-1ß, CCL5, and IL-8 were up-regulated by both viruses in the brain, lung and spleen at 3 and 7 days post-infection. Notably, these proinflammatory cytokines and chemokines showed more intense expression in the brain, when induced by the GZH14 strain than with the KP08 strain. These results indicate that the intense inflammatory responses induced by PPMV-1 in the brain may be a critical determinant of neurological symptoms in pigeons infected with PPMV-1. Our study provides new insight into the pathogenicity of PPMV-1 in pigeons attributable to the host immune responses.


Asunto(s)
Estructuras Animales/patología , Columbidae , Citocinas/análisis , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/patología , Virus de la Enfermedad de Newcastle/inmunología , Estructuras Animales/virología , Animales , Perfilación de la Expresión Génica , Genotipo , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Virus de la Enfermedad de Newcastle/aislamiento & purificación
8.
Microb Pathog ; 125: 281-289, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30240816

RESUMEN

Porcine 2',5'-oligoadenylate synthetase-like protein is an essential antiviral protein induced by interferons; however, its bioinformatics, genetic characteristics and immunological characteristics related to porcine reproductive and respiratory syndrome virus are still unknown. In this study, porcine 2',5'-oligoadenylate synthetase-like protein was cloned, and various attributes were predicted by bioinformatics analysis. Through RNAi depletion and overexpression methods, it was determined that porcine OASL not only inhibits porcine reproductive and respiratory virus replication but also activates interferon-beta production and the interferon-beta promoter, promoting the expression of interferon-beta mRNA. Through the depletion of different amino acids at the N and C termini, the antiviral activity and promoting the activity of interferon beta were evaluated. The results demonstrated that 31-60 amino acids at the N terminus were critical for virus replication. This study laid a theoretical foundation for exploring the characteristics of the porcine 2',5'-oligoadenylate synthetase-like protein and suggested a new strategy for the prevention and control of porcine reproductive and respiratory syndrome virus and investigation of the therapeutic mechanism of this protein.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Antivirales/metabolismo , Interacciones Huésped-Patógeno , Factores Inmunológicos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , 2',5'-Oligoadenilato Sintetasa/genética , Animales , Clonación Molecular , Expresión Génica , Silenciador del Gen , Factores Inmunológicos/genética , Interferón beta/biosíntesis , Porcinos
9.
Arch Virol ; 163(6): 1407-1417, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29397456

RESUMEN

Infection of chickens with virulent Newcastle disease virus (NDV) is associated with severe pathology and increased morbidity and mortality. The innate immune response contributes to the pathogenicity of NDV. As professional antigen-presenting cells, dendritic cells (DCs) play a unique role in innate immunity. However, the contribution of DCs to NDV infection has not been investigated in chickens. In this study, we selected two representative NDV strains, i.e., the velogenic NDV strain Chicken/Guangdong/GM/2014 (GM) and the lentogenic NDV strain La Sota, to investigate whether NDVs could infect LPS-activated chicken bone-derived marrow DCs (mature chicken BM-DCs). We compared the viral titres and innate immune responses in mature chicken BM-DCs following infection with those strains. Both NDV strains could infect mature chicken BM-DC, but the GM strain showed stronger replication capacity than the La Sota strain in mature chicken BM-DCs. Gene expression profiling showed that MDA5, LGP2, TLR3, TLR7, IFN-α, IFN-ß, IFN-γ, IL-1ß, IL-6, IL-18, IL-8, CCL5, IL-10, IL-12, MHC-I, and MHC-II levels were altered in mature DCs after infection with NDVs at all evaluated times postinfection. Notably, the GM strain triggered stronger innate immune responses than the La Sota strain in chicken BM-DCs. However, both strains were able to suppress the expression of some cytokines, such as IL-6 and IFN-α, in mature chicken DCs at 24 hpi. These data provide a foundation for further investigation of the role of chicken DCs in NDV infection.


Asunto(s)
Proteínas Aviares/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/inmunología , Animales , Proteínas Aviares/genética , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/virología , Pollos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Interacciones Huésped-Patógeno/genética , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Interferones/genética , Interferones/inmunología , Interleucinas/genética , Interleucinas/inmunología , Lipopolisacáridos/farmacología , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , ARN Helicasas/genética , ARN Helicasas/inmunología , Transducción de Señal , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología , Virulencia , Replicación Viral
10.
Indian J Microbiol ; 58(3): 332-344, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30013278

RESUMEN

An interferon-mediated antiviral protein, 2'-5' oligoadenylate synthetase 2, plays an important role in the antiviral response of interferons. In this study, 2'-5' oligoadenylate synthetase 2 genes were cloned from Chinese domestic pigs. Bioinformatics analysis revealed that the 2024-bp long open reading fame encodes 707 amino acids. There are two conserved regions in this protein: the nucleotidyltransferase domain, and the 2'-5' oligoadenylate synthetase domain (OAS). Genetic evolution analysis showed that the 2'-5' oligoadenylate synthetase 2 gene in domestic pigs is closely related to that of cattle. There are multiple antigenic sites, no signal peptide, and no transmembrane region in the gene, which is predicted to be a hydrophilic protein. Secondary structures were found to be mainly alpha helix-based; its tertiary structure is close to that of humans and cattle, but not that of mice. Tissue distribution results indicated that this protein is distributed in multiple organs, with high distribution in the liver; it is mainly localized in the cytoplasm. PRRSV infection, interferon-beta, and Poly(I: C) treatment all promoted 2'-5' oligoadenylate synthetase 2 gene expression. Overexpression and RNA silencing of porcine OAS2 inhibited and promoted PRRSV replication in cells, respectively. The inhibitory effect of porcine OAS2 was mainly dependent on RNase L, similar to what was predicted. This study has laid the foundation for future antiviral studies in pig, and provided a new way of preventing and treating PRRSV in the future.

11.
Virus Genes ; 53(1): 35-43, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27718047

RESUMEN

Despite intensive vaccination campaigns, outbreaks of Newcastle disease (ND) have been frequently reported in China, especially of genotype VII that first emerged in the late 1990s. Given the dire need for vaccines against the circulating genotype VII virus, we developed an alternative method to recover a highly virulent recombinant GM (rGM) virus that involves a T7 system with a hammerhead ribozyme sequence introduced downstream of the T7 promoter. By changing the F0 polybasic cleavage site RRQKR↓F to the monobasic GRQGR↓L, we generated a mutant virus (rGM-VIIm) that was found to be highly attenuated in chickens. The rGM-VIIm virus not only produced fourfold higher hemagglutination assay (HA) titers than the parental virus, but also exhibited genetic stability after 15 continuous passages in specific-pathogen-free (SPF) embryonated eggs. Whether live or inactivated, rGM-VIIm and LaSota vaccines can protect vaccinated birds from GM challenge infection. However, live and inactivated rGM-VIIm vaccines reduced virus shedding of the homologous challenge virus significantly better than the LaSota virus vaccine did. Altogether, our results suggest that rGM-VIIm vaccines could aid in the control of ND in China.


Asunto(s)
Genotipo , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Vacunas Atenuadas , Vacunas Virales/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pollos , ADN Complementario , Orden Génico , Genoma Viral , Inmunización , Mutación , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/virología , Carga Viral , Virulencia , Replicación Viral , Esparcimiento de Virus
12.
Virol J ; 13: 41, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26975566

RESUMEN

BACKGROUND: Chickens and ducks are major hosts of Newcastle disease virus (NDV) with distinct responses to infection. However, whereas ducks are generally asymptomatic or exhibit only mild symptoms following NDV infection and are thus regarded as potential long-term reservoirs of the virus, chickens exhibit severe clinical lesions, transient infections and even death due to NDV infection. These differences may in part result from the host innate immune response to NDV infection. METHODS: To better understand the host innate immune response to NDV infection in avian species, by using the quantitative real-time polymerase chain reaction method we examined the messenger RNA expression levels of immune-related genes in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) when infected with NDV of different pathogenicities. RESULTS: Gene expression profiles showed that the expression of IL-1beta, TNF-α-like factor (LITAF) and interferon (IFN)-beta was upregulated in both CEFs and DEFs infected with SS-10 and NH-10 viruses or treated with polyinosinic:polycytidylic acid [poly(I:C)], as well as that expression levels were greater in CEFs than in DEFs. The expression of TLR3, TLR7, IL-6, IFN-alpha, IFN-gamma, MHC-I and MHC-II, except for IL-8, were also greater in CEFs than in DEFs in response to infection to both viruses or treatment with poly(I:C). However, unlike moderate virulent NH-10, highly virulent SS-10 induced greater pattern recognition receptors and cytokines, except for IFNs, in CEFs and DEFs. CONCLUSION: Results show distinct expression patterns of cytokines, Toll-like receptors and IFNs associated with inflammatory immune responses to NDV between species and by virulence.


Asunto(s)
Inmunidad Innata , Virus de la Enfermedad de Newcastle/fisiología , Animales , Línea Celular , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Embrión de Pollo , Pollos , Citocinas/genética , Citocinas/metabolismo , Patos , Fibroblastos/virología , Expresión Génica , Genotipo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Interacciones Huésped-Patógeno/inmunología , Mediadores de Inflamación/metabolismo , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/inmunología , Enfermedad de Newcastle/metabolismo , Enfermedad de Newcastle/virología , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Replicación Viral
13.
Virol J ; 11: 147, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25117968

RESUMEN

BACKGROUND: Newcastle disease (ND) is an OIE listed disease caused by virulent avian paramyxovirus type 1 (APMV-1) strains, which is enzootic and causes large economic losses in the poultry sector. Genotype VII and genotype IX NDV viruses were the predominant circulating genotype in China, which may possibly be responsible for disease outbreaks in chicken flocks in recent years. While ducks and geese usually have exhibited inapparent infections. METHODS: In the present study, we investigate the complete genome sequence, the clinicopathological characterization and transmission of two virulent Newcastle disease viruses, SS-10 and NH-10, isolated from domestic ducks in Southern China in 2010. RESULTS: F, and the complete gene sequences based on phylogenetic analysis demonstrated that SS-10 (genotype VII) and NH-10 (genotype IX) belongs to class II. The deduced amino acid sequence was (112)R-R-Q-K/R-R-F(117) at the fusion protein cleavage site. Animal experiment results showed that the SS-10 virus isolated from ducks was highly pathogenic for chickens and geese, but low pathogenic for ducks. It could be detected from spleen, lung, kidney, trachea, small intestine, bursa of fabricius, thymus, pancreas and cecal tonsils, oropharyngeal and cloacal swabs, and could transmit to the naive contact birds. Moreover, it could transmit to chickens, ducks and geese by naive contact. However, the NH-10 virus isolated from ducks could infect some chickens, ducks and geese, but only caused chickens to die. Additionally, it could transmit to the naive contact chickens, ducks, and geese. CONCLUSION: The two NDV isolates exhibited different biological properties with respect to pathogenicity and transmission in chickens, ducks and geese. Therefore, no species-preference exists for chicken, duck or goose viruses and more attention should be paid to the trans-species transmission of VII NDVs between ducks, geese and chickens for the control and eradication of ND.


Asunto(s)
Patos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/virología , Animales , Pollos , China , Brotes de Enfermedades , Gansos , Genoma Viral , Datos de Secuencia Molecular , Enfermedad de Newcastle/transmisión , Virus de la Enfermedad de Newcastle/patogenicidad , Sistemas de Lectura Abierta , Enfermedades de las Aves de Corral/transmisión , ARN Viral , Análisis de Secuencia de ADN , Virulencia/genética
14.
Acta Vet Hung ; 62(4): 500-11, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25410392

RESUMEN

Interferon regulatory factor 7 (IRF7) is essential for the induction of an antiviral response. Previous studies have shown that virus replication causes the activation or expression of Type I interferon (IFN) in cells, which further activates IFN-stimulated genes (ISGs) to retard virus growth. In this study, after infection of chicken embryo fibroblasts (CEFs) with the lentogenic Newcastle disease virus (NDV) strain LaSota or the velogenic NDV strain GM, the mRNA and protein levels of IRF7 showed a significant increase, and part of the IRF7 protein was translocated from the cytoplasm to the nucleus. In order to further explore the effect of IRF7-mediated innate immune response on the replication of NDV in CEFs, the mRNA levels of IFN-α, IFN-ß and STAT1 were measured and the replication kinetics of NDV determined. The results showed that specific siRNA could inhibit the expression of IRF7 and limit the mRNA level of IFN-α, IFN-ß and STAT1 and, accordingly, the replication kinetics of both NDVs were enhanced after the inhibition of IRF7. In conclusion, IRF7 is an important nuclear transcription factor for the induction of Type I IFNs during the antiviral response, which can affect the replication of NDV and spread to CEFs in the early phase of viral infection.

15.
Emerg Microbes Infect ; 12(2): 2245920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37542379

RESUMEN

Epstein-Barr virus (EBV) is the first reported human oncogenic virus and infects more than 95% of the human population worldwide. EBV latent infection in B lymphocytes is essential for viral persistence. Glycoprotein gp42 is an indispensable member of the triggering complex for EBV entry into B cells. The C-type lectin domain (CTLD) of gp42 plays a key role in receptor binding and is the major target of neutralizing antibodies. Here, we isolated two rabbit antibodies, 1A7 and 6G7, targeting gp42 CTLD with potent neutralizing activity against B cell infection. Antibody 6G7 efficiently protects humanized mice from lethal EBV challenge and EBV-induced lymphoma. Neutralizing epitopes targeted by antibodies 1A7 and 6G7 are distinct and novel. Antibody 6G7 blocks gp42 binding to B cell surface and both 1A7 and 6G7 inhibit membrane fusion with B cells. Furthermore, 1A7- and 6G7-like antibodies in immunized sera are major contributors to B cell neutralization. This study demonstrates that anti-gp42 neutralizing antibodies are effective in inhibiting EBV infection and sheds light on the design of gp42-based vaccines and therapeutics.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Conejos , Humanos , Animales , Ratones , Herpesvirus Humano 4/metabolismo , Anticuerpos Neutralizantes , Glicoproteínas de Membrana/metabolismo , Proteínas Virales/metabolismo , Epítopos
16.
Adv Sci (Weinh) ; 10(35): e2302116, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890462

RESUMEN

Epstein-Barr virus (EBV) is associated with various malignancies and infects >90% of the global population. EBV latent proteins are expressed in numerous EBV-associated cancers and contribute to carcinogenesis, making them critical therapeutic targets for these cancers. Thus, this study aims to develop mRNA-based therapeutic vaccines that express the T-cell-epitope-rich domain of truncated latent proteins of EBV, including truncatedlatent membrane protein 2A (Trunc-LMP2A), truncated EBV nuclear antigen 1 (Trunc-EBNA1), and Trunc-EBNA3A. The vaccines effectively activate both cellular and humoral immunity in mice and show promising results in suppressing tumor progression and improving survival time in tumor-bearing mice. Furthermore, it is observed that the truncated forms of the antigens, Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A, are more effective than full-length antigens in activating antigen-specific immune responses. In summary, the findings demonstrate the effectiveness of mRNA-based therapeutic vaccines targeting the T-cell-epitope-rich domain of EBV latent proteins and providing new treatment options for EBV-associated cancers.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Ratones , Animales , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/terapia , Epítopos de Linfocito T , Vacunas de ARNm , Proteínas de la Membrana , ARN Mensajero/genética
17.
Cell Rep Med ; 4(11): 101296, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992686

RESUMEN

Epstein-Barr virus (EBV) is closely associated with cancer, multiple sclerosis, and post-acute coronavirus disease 2019 (COVID-19) sequelae. There are currently no approved therapeutics or vaccines against EBV. It is noteworthy that combining multiple EBV glycoproteins can elicit potent neutralizing antibodies (nAbs) against viral infection, suggesting possible synergistic effects. Here, we characterize three nAbs (anti-gp42 5E3, anti-gHgL 6H2, and anti-gHgL 10E4) targeting different glycoproteins of the gHgL-gp42 complex. Two antibody cocktails synergistically neutralize infection in B cells (5E3+6H2+10E4) and epithelial cells (6H2+10E4) in vitro. Moreover, 5E3 alone and the 5E3+6H2+10E4 cocktail confer potent in vivo protection against lethal EBV challenge in humanized mice. The cryo-EM structure of a heptatomic gHgL-gp42 immune complex reveals non-overlapping epitopes of 5E3, 6H2, and 10E4 on the gHgL-gp42 complex. Structural and functional analyses highlight different neutralization mechanisms for each of the three nAbs. In summary, our results provide insight for the rational design of therapeutics or vaccines against EBV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Vacunas , Animales , Ratones , Proteínas del Envoltorio Viral/química , Glicoproteínas de Membrana , Herpesvirus Humano 4 , Proteínas Virales , Terapéutica Combinada de Anticuerpos , Epítopos , Glicoproteínas , Anticuerpos Neutralizantes/uso terapéutico
18.
Cell Host Microbe ; 31(11): 1882-1897.e10, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37848029

RESUMEN

Epstein-Barr virus (EBV) is a global public health concern, as it is known to cause multiple diseases while also being etiologically associated with a wide range of epithelial and lymphoid malignancies. Currently, there is no available prophylactic vaccine against EBV. gB is the EBV fusion protein that mediates viral membrane fusion and participates in host recognition, making it critical for EBV infection in both B cells and epithelial cells. Here, we present a gB nanoparticle, gB-I53-50 NP, that displays multiple copies of gB. Compared with the gB trimer, gB-I53-50 NP shows improved structural integrity and stability, as well as enhanced immunogenicity in mice and non-human primate (NHP) preclinical models. Immunization and passive transfer demonstrate a robust and durable protective antibody response that protects humanized mice against lethal EBV challenge. This vaccine candidate demonstrates significant potential in preventing EBV infection, providing a possible platform for developing prophylactic vaccines for EBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Vacunas , Cricetinae , Animales , Ratones , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/prevención & control , Formación de Anticuerpos , Células CHO , Anticuerpos Neutralizantes , Anticuerpos Antivirales
19.
Viruses ; 14(11)2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36366470

RESUMEN

The Epstein-Barr virus (EBV) is associated with a variety of human malignancies, including Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric cancers. EBV infection is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play important roles in the process of virus entry into host cells. Current studies have shown that the main tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial cells significantly differs, relying on heterogenous glycoprotein-receptor interactions. This review focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a comprehensive overview.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad de Hodgkin , Humanos , Herpesvirus Humano 4 , Linfocitos B , Glicoproteínas , Tropismo
20.
Nat Commun ; 13(1): 2674, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562337

RESUMEN

Emerging SARS-CoV-2 variants of concern (VOCs) harboring multiple mutations in the spike protein raise concerns on effectiveness of current vaccines that rely on the ancestral spike protein. Here, we design a quadrivalent mosaic nanoparticle vaccine displaying spike proteins from the SARS-CoV-2 prototype and 3 different VOCs. The mosaic nanoparticle elicits equivalent or superior neutralizing antibodies against variant strains in mice and non-human primates with only small reduction in neutralization titers against the ancestral strain. Notably, it provides protection against infection with prototype and B.1.351 strains in mice. These results provide a proof of principle for the development of multivalent vaccines against pandemic and potential pre-emergent SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Ratones , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Combinadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA