Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 17(4): 240-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26790531

RESUMEN

Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.


Asunto(s)
Efrinas/fisiología , Receptores de la Familia Eph/metabolismo , Transducción de Señal , Animales , Crecimiento y Desarrollo/fisiología , Humanos
2.
Proc Natl Acad Sci U S A ; 121(23): e2314213121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805282

RESUMEN

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.


Asunto(s)
Proteínas de Homeodominio , Animales , Ratones , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Neuronas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Brain ; 146(4): 1373-1387, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200388

RESUMEN

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Asunto(s)
Proteínas de Caenorhabditis elegans , Discapacidad Intelectual , Animales , Humanos , Cuerpo Calloso/patología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Discapacidad Intelectual/genética , Fenotipo , Ligasas/genética , Ubiquitinas/genética , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
4.
J Neurosci ; 42(42): 7885-7899, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36028316

RESUMEN

Anterolateral system (AS) neurons transmit pain signals from the spinal cord to the brain. Their morphology, anatomy, and physiological properties have been extensively characterized and suggest that specific AS neurons and their brain targets are concerned with the discriminatory aspects of noxious stimuli, such as their location or intensity, and their motivational/emotive dimension. Among the recently unraveled molecular markers of AS neurons is the developmentally expressed transcription factor Phox2a, providing us with the opportunity to selectively disrupt the embryonic wiring of AS neurons to gain insights into the logic of their adult function. As mice with a spinal-cord-specific loss of the netrin-1 receptor deleted in colorectal carcinoma (DCC) have increased AS neuron innervation of ipsilateral brain targets and defective noxious stimulus localization or topognosis, we generated mice of either sex carrying a deletion of Dcc in Phox2a neurons. Such DccPhox2a mice displayed impaired topognosis along the rostrocaudal axis but with little effect on left-right discrimination and normal aversive responses. Anatomical tracing experiments in DccPhox2a mice revealed defective targeting of cervical and lumbar AS axons within the thalamus. Furthermore, genetic labeling of AS axons revealed their expression of DCC on their arrival in the brain, at a time when many of their target neurons are being born and express Ntn1 Our experiments suggest a postcommissural crossing function for netrin-1:DCC signaling during the formation of somatotopically ordered maps and are consistent with a discriminatory function of some of the Phox2a AS neurons.SIGNIFICANCE STATEMENT How nociceptive (pain) signals are relayed from the body to the brain remains an important question relevant to our understanding of the basic physiology of pain perception. Previous studies have demonstrated that the AS is a main effector of this function. It is composed of AS neurons located in the spinal cord that receive signals from nociceptive sensory neurons that detect noxious stimuli. In this study, we generate a genetic miswiring of mouse AS neurons that results in a decreased ability to perceive the location of a painful stimulus. The precise nature of this defect sheds light on the function of different kinds of AS neurons and how pain information may be organized.


Asunto(s)
Neoplasias Colorrectales , Factores de Crecimiento Nervioso , Animales , Ratones , Neoplasias Colorrectales/metabolismo , Receptor DCC/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Netrina/metabolismo , Netrina-1 , Neuronas/fisiología , Dolor/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Tálamo
5.
Mol Pain ; 19: 17448069231170546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37015885

RESUMEN

The development of the chronic neuropathic pain state often originates at the level of peripheral sensory neurons, whose abnormal function elicits central sensitization and maladaptive plasticity in the nociceptive circuits of the spinal dorsal horn. These changes eventually reach supraspinal areas bringing about cognitive and affective co-morbidities of chronic pain such as anxiety and depression. This transmission presumably relies on the function of spinal projection neurons at the origin of the anterolateral system (AS). However, the identity of these neurons and the extent of their functional contribution remain unknown. Here, we asked these questions in the context of the mouse AS neurons that require the transcription factor Phox2a for their normal target connectivity and function in transmitting acute nociceptive information to the brain. To this end, we examined the effects of a spinal cord-specific loss of Phox2a (Phox2acKO) on the development of central sensitization evoked by the spared nerve injury (SNI) model of chronic pain. We found that SNI-treated Phox2acKO mice developed normal reflexive spinal responses such as mechanical allodynia evidenced by a decreased withdrawal threshold to von Frey filament stimulation and dynamic brush. On the other hand, Phox2acKO attenuated the development of cold but not mechanical hyperalgesia, in behavioral paradigms that require the relay of nociceptive information to the brain. Furthermore, Phox2acKO attenuated anxio-depressive-like behaviors evoked by SNI, measured by performance in the open field test and tail suspension test. Thus, Phox2a AS neurons play a critical role in the generation and maintenance of chronic neuropathic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Ratones , Animales , Dolor Crónico/genética , Neuronas , Hiperalgesia , Neuralgia/genética , Asta Dorsal de la Médula Espinal , Proteínas de Homeodominio/genética
6.
Brain ; 145(3): 1111-1123, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34788396

RESUMEN

Chronic pain is often present at more than one anatomical location, leading to chronic overlapping pain conditions. Whether chronic overlapping pain conditions represent a distinct pathophysiology from the occurrence of pain at only one site is unknown. Using genome-wide approaches, we compared genetic determinants of chronic single-site versus multisite pain in the UK Biobank. We found that different genetic signals underlie chronic single-site and multisite pain with much stronger genetic contributions for the latter. Among 23 loci associated with multisite pain, nine loci replicated in the HUNT cohort, with the DCC netrin 1 receptor (DCC) as the top gene. Functional genomics identified axonogenesis in brain tissues as the major contributing pathway to chronic multisite pain. Finally, multimodal structural brain imaging analysis showed that DCC is most strongly expressed in subcortical limbic regions and is associated with alterations in the uncinate fasciculus microstructure, suggesting that DCC-dependent axonogenesis may contribute to chronic overlapping pain conditions via corticolimbic circuits.


Asunto(s)
Dolor Crónico , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Enfermedad Crónica , Dolor Crónico/genética , Humanos , Netrina-1 , Neurogénesis/genética
7.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33727334

RESUMEN

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Asunto(s)
Axones/fisiología , Paxillin/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Orientación del Axón/fisiología , Embrión de Pollo , Electroporación , Efrinas/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Genes src/genética , Humanos , Masculino , Ratones , MicroARNs/genética , Neuronas Motoras/fisiología , Mutación/genética , Neuritas/fisiología , Médula Espinal/citología
8.
J Neurosci ; 38(8): 2043-2056, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29363583

RESUMEN

The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo, suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection.SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been suggested to be involved in neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's disease. To dissect the mechanism of Eph signal relay, we studied ephexin1 gain of function and loss of function and found ephexin1 essential for the development of limb nerves toward their muscle targets, concluding that it functions as an intermediary to relay Eph signaling in this context. Our work could thus shed new light on the molecular mechanisms controlling neuromuscular connectivity during embryonic development.


Asunto(s)
Orientación del Axón/fisiología , Axones/ultraestructura , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas Motoras/citología , Animales , Axones/metabolismo , Embrión de Pollo , Efrinas/metabolismo , Extremidades/inervación , Ratones , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación
9.
Dev Dyn ; 247(4): 620-629, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28691197

RESUMEN

BACKGROUND: Humans with heterozygous mutations in the axon guidance receptor DCC display congenital mirror movements (MMs), which are involuntary movements of body parts, such as fingers, on one side of the body that mirror voluntary movement of the opposite side. In mice, the homozygous Dcckanga mutant allele causes synchronous MM-like hindlimb movements during locomotion, resulting in hopping. In both human and mice, the neuroanatomical defect responsible for the deficit in lateralized motor control remains to be elucidated. RESULTS: Using the HoxB8-Cre line to specifically remove Dcc from the spinal cord, we found misrouting of commissural axons during their migration toward the floor plate, resulting in fewer axons crossing the midline. These mice also have a hopping gait, indicating that spinal cord guidance defects alone are sufficient to cause hopping. CONCLUSIONS: Dcc plays a role in the development of local spinal networks to ensure proper lateralization of motor control during locomotion. Local spinal cord defects following loss of Dcc cause a hopping gait in mice and may contribute to MM in humans. Developmental Dynamics 247:620-629, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Receptor DCC/genética , Médula Espinal/fisiopatología , Animales , Receptor DCC/deficiencia , Lateralidad Funcional , Marcha , Humanos , Locomoción , Ratones
10.
J Neurosci ; 36(2): 561-76, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758845

RESUMEN

The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT: In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Neuronas Motoras/patología , Proteínas Munc18/deficiencia , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Médula Espinal/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular/genética , Receptor DCC , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Guanilato-Quinasas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Munc18/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Transporte de Proteínas/genética , Receptor trkB/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/genética , Médula Espinal/embriología , Sintaxina 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo
11.
Development ; 141(3): 594-603, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449837

RESUMEN

The establishment of anatomically stereotyped axonal projections is fundamental to neuronal function. While most neurons project their axons within the central nervous system (CNS), only axons of centrally born motoneurons and peripherally born sensory neurons link the CNS and peripheral nervous system (PNS) together by navigating through specialized CNS/PNS transition zones. Such selective restriction is of importance because inappropriate CNS axonal exit could lead to loss of correct connectivity and also to gain of erroneous functions. However, to date, surprisingly little is known about the molecular-genetic mechanisms that regulate how central axons are confined within the CNS during development. Here, we show that netrin 1/Dcc/Unc5 chemotropism contributes to axonal confinement within the CNS. In both Ntn1 and Dcc mutant mouse embryos, some spinal interneuronal axons exit the CNS by traversing the CNS/PNS transition zones normally reserved for motor and sensory axons. We provide evidence that netrin 1 signalling preserves CNS/PNS axonal integrity in three ways: (1) netrin 1/Dcc ventral attraction diverts axons away from potential exit points; (2) a Dcc/Unc5c-dependent netrin 1 chemoinhibitory barrier in the dorsolateral spinal cord prevents interneurons from being close to the dorsal CNS/PNS transition zone; and (3) a netrin 1/Dcc-dependent, Unc5c-independent mechanism that actively prevents exit from the CNS. Together, these findings provide insights into the molecular mechanisms that maintain CNS/PNS integrity and, to the best of our knowledge, present the first evidence that chemotropic signalling regulates interneuronal CNS axonal confinement in vertebrates.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Biomarcadores/metabolismo , Sistema Nervioso Central/citología , Receptor DCC , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Interneuronas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/deficiencia , Transducción de Señal/genética , Médula Espinal/citología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , beta-Galactosidasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(10): 3745-50, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567399

RESUMEN

Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Mioblastos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Embrión de Pollo , Electroporación , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Hibridación in Situ , Proteínas de la Membrana , Ratones , Fibras Musculares Esqueléticas/citología , Técnicas del Sistema de Dos Híbridos
13.
J Neurosci ; 35(13): 5233-46, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834049

RESUMEN

Spinal cord neurons respond to peripheral noxious stimuli and relay this information to higher brain centers, but the molecules controlling the assembly of such pathways are poorly known. In this study, we use the intersection of Lmx1b and Hoxb8::Cre expression in the spinal cord to genetically define nociceptive circuits. Specifically, we show that Lmx1b, previously shown to be expressed in glutamatergic dorsal horn neurons and critical for dorsal horn development, is expressed in nociceptive dorsal horn neurons and that its deletion results in the specific loss of excitatory dorsal horn neurons by apoptosis, without any effect on inhibitory neuron numbers. To assess the behavioral consequences of Lmx1b deletion in the spinal cord, we used the brain-sparing driver Hoxb8::Cre. We show that such a deletion of Lmxb1 leads to a robust reduction in sensitivity to mechanical and thermal noxious stimulation. Furthermore, such conditional mutant mice show a loss of a subpopulation of glutamatergic dorsal horn neurons, abnormal sensory afferent innervations, and reduced spinofugal innervation of the parabrachial nucleus and the periaqueductal gray, important nociceptive structures. Together, our results demonstrate an important role for the intersection of Lmx1b and Hoxb8::cre expression in the development of nociceptive dorsal horn circuits critical for mechanical and thermal pain processing.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/fisiología , Nocicepción/fisiología , Células del Asta Posterior/fisiología , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/metabolismo , Factores de Transcripción/fisiología , Animales , Apoptosis , Eliminación de Gen , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/biosíntesis , Proteínas con Homeodominio LIM/deficiencia , Proteínas con Homeodominio LIM/genética , Ratones , Vías Nerviosas , Neuronas Aferentes , Núcleos Parabraquiales/fisiología , Sustancia Gris Periacueductal/fisiología , Células del Asta Posterior/citología , Células del Asta Posterior/patología , Asta Dorsal de la Médula Espinal/crecimiento & desarrollo , Asta Dorsal de la Médula Espinal/patología , Factores de Transcripción/biosíntesis , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
14.
J Neurosci ; 35(6): 2344-57, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673830

RESUMEN

Axonal guidance involves extrinsic molecular cues that bind growth cone receptors and signal to the cytoskeleton through divergent pathways. Some signaling intermediates are deployed downstream of molecularly distinct axon guidance receptor families, but the scope of this overlap is unclear, as is the impact of embryonic axon guidance fidelity on adult nervous system function. Here, we demonstrate that the Rho-GTPase-activating protein α2-chimaerin is specifically required for EphA and not EphB receptor signaling in mouse and chick spinal motor axons. Reflecting this specificity, the loss of α2-chimaerin function disrupts the limb trajectory of extensor-muscle-innervating motor axons the guidance of which depends on EphA signaling. These embryonic defects affect coordinated contraction of antagonistic flexor-extensor muscles in the adult, indicating that accurate embryonic motor axon guidance is critical for optimal neuromuscular function. Together, our observations provide the first functional evidence of an Eph receptor-class-specific intracellular signaling protein that is required for appropriate neuromuscular connectivity.


Asunto(s)
Axones/fisiología , Quimerina 1/genética , Quimerina 1/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Receptores de la Familia Eph/fisiología , Animales , Conducta Animal/fisiología , Embrión de Pollo , Marcha/fisiología , Masculino , Ratones , Actividad Motora/fisiología , Contracción Muscular/fisiología , Equilibrio Postural/fisiología , Proteínas de Unión al GTP rho/metabolismo
15.
J Neurosci ; 33(46): 18208-18, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227729

RESUMEN

Classic studies have proposed that genetically encoded programs and spontaneous activity play complementary but independent roles in the development of neural circuits. Recent evidence, however, suggests that these two mechanisms could interact extensively, with spontaneous activity affecting the expression and function of guidance molecules at early developmental stages. Here, using the developing chick spinal cord and the mouse visual system to ectopically express the inwardly rectifying potassium channel Kir2.1 in individual embryonic neurons, we demonstrate that cell-intrinsic blockade of spontaneous activity in vivo does not affect neuronal identity specification, axon pathfinding, or EphA/ephrinA signaling during the development of topographic maps. However, intrinsic spontaneous activity is critical for axon branching and pruning once axonal growth cones reach their correct topographic position in the target tissues. Our experiments argue for the dissociation of spontaneous activity from hard-wired developmental programs in early phases of neural circuit formation.


Asunto(s)
Potenciales de Acción/fisiología , Red Nerviosa/metabolismo , Receptores de la Familia Eph/metabolismo , Transducción de Señal/fisiología , Animales , Embrión de Pollo , Femenino , Ratones , Ratones Endogámicos ICR , Unión Proteica/fisiología
16.
Semin Cell Dev Biol ; 23(1): 83-91, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22040916

RESUMEN

In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.


Asunto(s)
Efrinas/fisiología , Neuronas Motoras/metabolismo , Receptores de la Familia Eph/fisiología , Transducción de Señal , Médula Espinal/citología , Animales , Efrinas/metabolismo , Extremidades/inervación , Humanos , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Receptores de la Familia Eph/metabolismo
17.
Dev Biol ; 382(2): 555-66, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23920117

RESUMEN

Translating the developmental program encoded in the genome into cellular and morphogenetic functions requires the deployment of elaborate gene regulatory networks (GRNs). GRNs are especially crucial at the onset of organ development where a few regulatory signals establish the different programs required for tissue organization. In the renal system primordium (the pro/mesonephros), important regulators have been identified but their hierarchical and regulatory organization is still elusive. Here, we have performed a detailed analysis of the GRN underlying mouse pro/mesonephros development. We find that a core regulatory subcircuit composed of Pax2/8, Gata3 and Lim1 turns on a deeper layer of transcriptional regulators while activating effector genes responsible for cell signaling and tissue organization. Among the genes directly affected by the core components are the key developmental molecules Nephronectin (Npnt) and Plac8. Hence, the pro/mesonephros GRN links together several essential genes regulating tissue morphogenesis. This renal GRN sheds new light on the disease group Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in that gene mutations are expected to generate different phenotypic outcomes as a consequence of regulatory network deficiencies rather than threshold effects from single genes.


Asunto(s)
Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas con Homeodominio LIM/genética , Mesonefro/embriología , Factor de Transcripción PAX2/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción/genética , Animales , Línea Celular , Riñón/anomalías , Mesonefro/metabolismo , Ratones , Morfogénesis/genética , Factor de Transcripción PAX8
18.
Adv Exp Med Biol ; 800: 133-48, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24243104

RESUMEN

The nervous system displays a high degree of topographic organisation such that neuronal soma position is closely correlated to axonal trajectory. One example of such order is the myotopic organisation of the motor system where spinal motor neuron position parallels that of target muscles. This chapter will discuss the molecular mechanisms underlying motor neuron soma positioning, which include transcriptional control of Reelin signaling and cadherin expression. As the same transcription factors have been shown to control motor axon innervation of target muscles, a simple mechanism of topographic organisation specification is becoming evident raising the question of how coordinating soma position with axon trajectory might be important for nervous system wiring and its function.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/metabolismo , Transducción de Señal/fisiología , Columna Vertebral/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Columna Vertebral/citología
19.
Elife ; 122024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289221

RESUMEN

Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas F-Box , Receptor EphB2 , Ubiquitina-Proteína Ligasas , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Caenorhabditis elegans/genética , Receptor EphB2/genética , Transducción de Señal , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
20.
J Neurosci ; 32(2): 411-6, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238077

RESUMEN

Down syndrome cell adhesion molecule (DSCAM) has mainly been characterized for its function as an adhesion molecule in axon growth and in self-recognition between dendrites of the same neuron. Recently, it has been shown that DSCAM can bind to Netrin-1 and that downregulation of DSCAM expression by siRNAs in chick and rodent spinal cords leads to impaired growth and turning response of commissural axons to Netrin-1. To investigate the effect of complete genetic ablation of DSCAM on Netrin-1-induced axon guidance, we analyzed spinal commissural neurons in DSCAM-null mice and found that they extend axons that reach and cross the floor plate and express apparently normal levels of the Netrin receptors DCC (deleted in colorectal carcinoma) and Neogenin. In vitro, commissural neurons in dorsal spinal cord explants of DSCAM-null embryos show normal outgrowth in response to Netrin-1. We therefore conclude that DSCAM is not required for Netrin-induced commissural axon outgrowth and guidance in mice.


Asunto(s)
Moléculas de Adhesión Celular/genética , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/fisiología , Vías Nerviosas/embriología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/fisiología , Animales , Moléculas de Adhesión Celular/deficiencia , Diferenciación Celular/genética , Femenino , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Netrina-1 , Vías Nerviosas/fisiología , Neurogénesis/genética , Médula Espinal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA