Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926281

RESUMEN

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Animales , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Histidina/metabolismo , Lipoilación , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
2.
J Mol Cell Cardiol ; 174: 38-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372279

RESUMEN

Cardiac fibrosis is regulated by the activation and phenotypic switching of quiescent cardiac fibroblasts to active myofibroblasts, which have extracellular matrix (ECM) remodeling and contractile functions which play a central role in cardiac remodeling in response to injury. Here, we show that expression and activity of the RNA binding protein HuR is increased in cardiac fibroblasts upon transformation to an active myofibroblast. Pharmacological inhibition of HuR significantly blunts the TGFß-dependent increase in ECM remodeling genes, total collagen secretion, in vitro scratch closure, and collagen gel contraction in isolated primary cardiac fibroblasts, suggesting a suppression of TGFß-induced myofibroblast activation upon HuR inhibition. We identified twenty-four mRNA transcripts that were enriched for HuR binding following TGFß treatment via photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP). Eleven of these HuR-bound mRNAs also showed significant co-expression correlation with HuR, αSMA, and periostin in primary fibroblasts isolated from the ischemic-zone of infarcted mouse hearts. Of these, WNT1-inducible signaling pathway protein-1 (Wisp1; Ccn4), was the most significantly associated with HuR expression in fibroblasts. Accordingly, we found Wisp1 expression to be increased in cardiac fibroblasts isolated from the ischemic-zone of mouse hearts following ischemia/reperfusion, and confirmed Wisp1 expression to be HuR-dependent in isolated fibroblasts. Finally, addition of exogenous recombinant Wisp1 partially rescued myofibroblast-induced collagen gel contraction following HuR inhibition, demonstrating that HuR-dependent Wisp1 expression plays a functional role in HuR-dependent MF activity downstream of TGFß. In conclusion, HuR activity is necessary for the functional activation of primary cardiac fibroblasts in response to TGFß, in part through post-transcriptional regulation of Wisp1.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Proteína 1 Similar a ELAV , Miofibroblastos , Factor de Crecimiento Transformador beta , Animales , Ratones , Colágeno/metabolismo , Fibroblastos/metabolismo , Corazón , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo
3.
Mol Ther ; 30(1): 54-74, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34678511

RESUMEN

Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infarto del Miocardio , Animales , Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/metabolismo , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 321(1): H228-H241, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018851

RESUMEN

Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.


Asunto(s)
Adipocitos/metabolismo , Cardiomegalia/genética , Proteína 1 Similar a ELAV/genética , Miocardio/metabolismo , Adipocitos/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteína 1 Similar a ELAV/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Noqueados , Miocardio/patología
5.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884909

RESUMEN

The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.


Asunto(s)
Infarto del Miocardio/patología , Comunicación Paracrina , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Exosomas/metabolismo , Exosomas/trasplante , Humanos , Infarto del Miocardio/terapia , Comunicación Paracrina/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
6.
Nature ; 509(7500): 337-41, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24805242

RESUMEN

If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine whether endogenous c-kit(+) cells contribute differentiated cardiomyocytes to the heart during development, with ageing or after injury in adulthood. A complementary DNA encoding either Cre recombinase or a tamoxifen-inducible MerCreMer chimaeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit(+) cells did produce new cardiomyocytes within the heart, although at a percentage of approximately 0.03 or less, and if a preponderance towards cellular fusion is considered, the percentage falls to below approximately 0.008. By contrast, c-kit(+) cells amply generated cardiac endothelial cells. Thus, endogenous c-kit(+) cells can generate cardiomyocytes within the heart, although probably at a functionally insignificant level.


Asunto(s)
Linaje de la Célula , Lesiones Cardíacas/patología , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Miocardio/citología , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Envejecimiento/fisiología , Animales , Diferenciación Celular , Fusión Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Corazón/crecimiento & desarrollo , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Tamoxifeno/farmacología
7.
Circulation ; 138(10): 1012-1024, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-29666070

RESUMEN

BACKGROUND: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells. METHODS: Kit allele-dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type-specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. RESULTS: Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. CONCLUSIONS: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.


Asunto(s)
Linaje de la Célula , Proliferación Celular , Células Endoteliales/metabolismo , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-kit/metabolismo , Regeneración , Animales , Trasplante de Médula Ósea , Fusión Celular , Rastreo Celular/métodos , Células Cultivadas , Femenino , Factor de Transcripción GATA4/deficiencia , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Leucocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
Hum Mol Genet ; 25(6): 1192-202, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744329

RESUMEN

Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD.


Asunto(s)
Proteínas de Fase Aguda/biosíntesis , Proteínas de Fase Aguda/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Serpinas/biosíntesis , Serpinas/genética , Proteínas de Fase Aguda/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Femenino , Integrinas/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Sarcolema/metabolismo , Serpinas/metabolismo , Transgenes , Regulación hacia Arriba , Utrofina/genética , Utrofina/metabolismo
10.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26966179

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Asunto(s)
Catepsinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares Esqueléticas/enzimología , Distrofia Muscular Animal/enzimología , Distrofia Muscular de Duchenne/enzimología , Animales , Citoesqueleto/enzimología , Citoesqueleto/genética , Citoesqueleto/patología , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Necrosis , Proteolisis , Sarcolema/enzimología , Sarcolema/genética , Sarcolema/patología
11.
Hum Mol Genet ; 23(25): 6903-15, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25106553

RESUMEN

Muscular dystrophy (MD) is a disease characterized by skeletal muscle necrosis and the progressive accumulation of fibrotic tissue. While transforming growth factor (TGF)-ß has emerged as central effector of MD and fibrotic disease, the cell types in diseased muscle that underlie TGFß-dependent pathology have not been segregated. Here, we generated transgenic mice with myofiber-specific inhibition of TGFß signaling owing to expression of a TGFß type II receptor dominant-negative (dnTGFßRII) truncation mutant. Expression of dnTGFßRII in myofibers mitigated the dystrophic phenotype observed in δ-sarcoglycan-null (Sgcd(-/-)) mice through a mechanism involving reduced myofiber membrane fragility. The dnTGFßRII transgene also reduced muscle injury and improved muscle regeneration after cardiotoxin injury, as well as increased satellite cell numbers and activity. An unbiased global expression analysis revealed a number of potential mechanisms for dnTGFßRII-mediated protection, one of which was induction of the antioxidant protein metallothionein (Mt). Indeed, TGFß directly inhibited Mt gene expression in vitro, the dnTGFßRII transgene conferred protection against reactive oxygen species accumulation in dystrophic muscle and treatment with Mt mimetics protected skeletal muscle upon injury in vivo and improved the membrane stability of dystrophic myofibers. Hence, our results show that the myofibers are central mediators of the deleterious effects associated with TGFß signaling in MD.


Asunto(s)
Distrofias Musculares/genética , Miofibrillas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/patología , Proteínas Cardiotóxicas de Elápidos/farmacología , Crotoxina/farmacología , Modelos Animales de Enfermedad , Combinación de Medicamentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Ratones , Ratones Transgénicos , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Miofibrillas/efectos de los fármacos , Miofibrillas/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Sarcoglicanos/deficiencia , Sarcoglicanos/genética , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Factor de Crecimiento Transformador beta/farmacología , Transgenes
13.
Stem Cell Rev Rep ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713406

RESUMEN

Although stem/progenitor cell therapy shows potential for myocardial infarction repair, enhancing the therapeutic efficacy could be achieved through additional genetic modifications. HCLS1-associated protein X-1 (HAX1) has been identified as a versatile modulator responsible for cardio-protective signaling, while its role in regulating stem cell survival and functionality remains unknown. In this study, we investigated whether HAX1 can augment the protective potential of Sca1+ cardiac stromal cells (CSCs) for myocardial injury. The overexpression of HAX1 significantly increased cell proliferation and conferred enhanced resistance to hypoxia-induced cell death in CSCs. Mechanistically, HAX1 can interact with Mst1 (a prominent conductor of Hippo signal transduction) and inhibit its kinase activity for protein phosphorylation. This inhibition led to enhanced nuclear translocation of Yes-associated protein (YAP) and activation of downstream therapeutic-related genes. Notably, HAX1 overexpression significantly increased the pro-angiogenic potential of CSCs, as demonstrated by elevated expression of vascular endothelial growth factors. Importantly, implantation of HAX1-overexpressing CSCs promoted neovascularization, protected against functional deterioration, and ameliorated cardiac fibrosis in ischemic mouse hearts. In conclusion, HAX1 emerges as a valuable and efficient inducer for enhancing the effectiveness of cardiac stem or progenitor cell therapeutics.

14.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746225

RESUMEN

During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement: Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.

15.
J Mol Cell Cardiol ; 65: 108-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24140724

RESUMEN

During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.


Asunto(s)
Fibrosis Endomiocárdica/metabolismo , Fibrosis Endomiocárdica/patología , Hipertensión/patología , Isquemia Miocárdica/patología , Pericardio/embriología , Pericardio/patología , Células Madre/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Fibrosis Endomiocárdica/embriología , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Hipertensión/complicaciones , Hipertensión/embriología , Hipertensión/metabolismo , Inflamación/metabolismo , Inflamación/patología , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/metabolismo , Ratones , Modelos Biológicos , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Pericardio/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas WT1/metabolismo
16.
Exp Mol Med ; 55(3): 502-509, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854776

RESUMEN

Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Miocardio/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutación
17.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37131709

RESUMEN

Ischemia-reperfusion (I/R) injury is a common occurrence in various surgical procedures used to treat heart diseases. However, the role of insulin-like growth factor 2 receptor (IGF2R) during the process of myocardial I/R remains unclear. Therefore, this study aims to investigate the expression, distribution, and functionality of IGF2R in various I/R-associated models (such as reoxygenation, revascularization, and heart transplant). Loss-of-function studies (including myocardial conditional knockout and CRISPR interference) were performed to clarify the role of IGF2R in I/R injuries. Following hypoxia, IGF2R expression increased, but this effect was reversed upon restoration of oxygen levels. Loss of myocardial IGF2R was found to enhance the cardiac contractile functions, and reduced cell infiltration or cardiac fibrosis of I/R mouse models compared to the genotype control. CRISPR-inhibition of IGF2R decreased cell apoptotic death under hypoxia. RNA sequencing analysis indicated that myocardial IGF2R played a critical role in regulating the inflammatory response, innate immune response, and apoptotic process following I/R. Integrated analysis of the mRNA profiling, pulldown assays, and mass spectrometry identified granulocyte-specific factors as potential targets of myocardial IGF2R in the injured heart. In conclusion, myocardial IGF2R emerges as a promising therapeutic target to ameliorate inflammation or fibrosis following I/R injuries.

18.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711986

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.

19.
Commun Biol ; 6(1): 1200, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001239

RESUMEN

The source and roles of fibroblasts and T-cells during maladaptive remodeling and myocardial fibrosis in the setting of pulmonary arterial hypertension (PAH) have been long debated. We demonstrate, using single-cell mass cytometry, a subpopulation of endogenous human cardiac fibroblasts expressing increased levels of CD4, a helper T-cell marker, in addition to myofibroblast markers distributed in human fibrotic RV tissue, interstitial and perivascular lesions in SUGEN/Hypoxia (SuHx) rats, and fibroblasts labeled with pdgfrα CreERt2/+ in R26R-tdTomato mice. Recombinant IL-1ß increases IL-1R, CCR2 receptor expression, modifies the secretome, and differentiates cardiac fibroblasts to form CD68-positive cell clusters. IL-1ß also activates stemness markers, such as NANOG and SOX2, and genes involved in dedifferentiation, lymphoid cell function and metabolic reprogramming. IL-1ß induction of lineage traced primary mouse cardiac fibroblasts causes these cells to lose their fibroblast identity and acquire an immune phenotype. Our results identify IL-1ß induced immune-competency in human cardiac fibroblasts and suggest that fibroblast secretome modulation may constitute a therapeutic approach to PAH and other diseases typified by inflammation and fibrotic remodeling.


Asunto(s)
Corazón , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Ratas , Fibroblastos/metabolismo , Fibrosis , Miofibroblastos/metabolismo
20.
Exp Biol Med (Maywood) ; 246(7): 851-860, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33327780

RESUMEN

Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.


Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/inmunología , Trasplante de Corazón , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Trasplante de Corazón/métodos , Humanos , Terapia de Inmunosupresión/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA