Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2123483119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507878

RESUMEN

Immunotherapy approaches focusing on T cells have provided breakthroughs in treating solid tumors. However, there remains an opportunity to drive anticancer immune responses via other cell types, particularly myeloid cells. ATRC-101 was identified via a target-agnostic process evaluating antibodies produced by the plasmablast population of B cells in a patient with non-small cell lung cancer experiencing an antitumor immune response during treatment with checkpoint inhibitor therapy. Here, we describe the target, antitumor activity in preclinical models, and data supporting a mechanism of action of ATRC-101. Immunohistochemistry studies demonstrated tumor-selective binding of ATRC-101 to multiple nonautologous tumor tissues. In biochemical analyses, ATRC-101 appears to target an extracellular, tumor-specific ribonucleoprotein (RNP) complex. In syngeneic murine models, ATRC-101 demonstrated robust antitumor activity and evidence of immune memory following rechallenge of cured mice with fresh tumor cells. ATRC-101 increased the relative abundance of conventional dendritic cell (cDC) type 1 cells in the blood within 24 h of dosing, increased CD8+ T cells and natural killer cells in blood and tumor over time, decreased cDC type 2 cells in the blood, and decreased monocytic myeloid-derived suppressor cells in the tumor. Cellular stress, including that induced by chemotherapy, increased the amount of ATRC-101 target in tumor cells, and ATRC-101 combined with doxorubicin enhanced efficacy compared with either agent alone. Taken together, these data demonstrate that ATRC-101 drives tumor destruction in preclinical models by targeting a tumor-specific RNP complex leading to activation of innate and adaptive immune responses.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias , Inmunidad Adaptativa , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Inmunidad Innata , Ratones , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA