Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 158(1): 185-197, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24954535

RESUMEN

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/patología , Ciclo Celular , Proteínas de Ciclo Celular , Línea Celular Tumoral , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción E2F/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , Proteínas ras/metabolismo
3.
Nature ; 568(7752): 410-414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918400

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Pinocitosis , Sindecano-1/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
4.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25119024

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Mitocondrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Autofagia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes p53/genética , Glucólisis , Lisosomas/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mutación/genética , Recurrencia Local de Neoplasia/prevención & control , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Recurrencia , Transducción de Señal , Neoplasias Pancreáticas
5.
Nature ; 468(7327): 1105-9, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21179167

RESUMEN

Cancer is a disease consisting of both genetic and epigenetic changes. Although increasing evidence demonstrates that tumour progression entails chromatin-mediated changes such as DNA methylation, the role of histone variants in cancer initiation and progression currently remains unclear. Histone variants replace conventional histones within the nucleosome and confer unique biological functions to chromatin. Here we report that the histone variant macroH2A (mH2A) suppresses tumour progression of malignant melanoma. Loss of mH2A isoforms, histone variants generally associated with condensed chromatin and fine-tuning of developmental gene expression programs, is positively correlated with increasing malignant phenotype of melanoma cells in culture and human tissue samples. Knockdown of mH2A isoforms in melanoma cells of low malignancy results in significantly increased proliferation and migration in vitro and growth and metastasis in vivo. Restored expression of mH2A isoforms rescues these malignant phenotypes in vitro and in vivo. We demonstrate that the tumour-promoting function of mH2A loss is mediated, at least in part, through direct transcriptional upregulation of CDK8. Suppression of CDK8, a colorectal cancer oncogene, inhibits proliferation of melanoma cells, and knockdown of CDK8 in cells depleted of mH2A suppresses the proliferative advantage induced by mH2A loss. Moreover, a significant inverse correlation between mH2A and CDK8 expression levels exists in melanoma patient samples. Taken together, our results demonstrate that mH2A is a critical component of chromatin that suppresses the development of malignant melanoma, a highly intractable cutaneous neoplasm.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Melanoma/patología , Metástasis de la Neoplasia/patología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Histonas/deficiencia , Histonas/genética , Humanos , Melanoma/fisiopatología , Melanoma Experimental , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/fisiopatología , Ratas , Regulación hacia Arriba
6.
Proc Natl Acad Sci U S A ; 109(23): 8971-6, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615382

RESUMEN

Cellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. Here we combine quantitative mass spectrometry, ChIP deep-sequencing, and functional studies to determine the role of histone modifications on chromatin structure and gene-expression alterations associated with senescence in primary human cells. We uncover distinct senescence-associated changes in histone-modification patterns consistent with a repressive chromatin environment and link the establishment of one of these patterns--loss of H3K4 methylation--to the retinoblastoma tumor suppressor and the H3K4 demethylases Jarid1a and Jarid1b. Our results show that Jarid1a/b-mediated H3K4 demethylation contributes to silencing of retinoblastoma target genes in senescent cells, suggesting a mechanism by which retinoblastoma triggers gene silencing. Therefore, we link the Jarid1a and Jarid1b demethylases to a tumor-suppressor network controlling cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Silenciador del Gen/fisiología , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Retinoblastoma/metabolismo , Línea Celular , Inmunoprecipitación de Cromatina , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Immunoblotting , Espectrometría de Masas , Metilación , Retroviridae , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
7.
Nature ; 455(7217): 1259-62, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18815596

RESUMEN

DNA methylation is an important epigenetic mark for transcriptional gene silencing (TGS) in diverse organisms. Recent studies suggest that the methylation status of a number of genes is dynamically regulated by methylation and demethylation. In Arabidopsis, active DNA demethylation is mediated by the ROS1 (repressor of silencing 1) subfamily of 5-methylcytosine DNA glycosylases through a base excision repair pathway. These demethylases have critical roles in erasing DNA methylation and preventing TGS of target genes. However, it is not known how the demethylases are targeted to specific sequences. Here we report the identification of ROS3, an essential regulator of DNA demethylation that contains an RNA recognition motif. Analysis of ros3 mutants and ros1 ros3 double mutants suggests that ROS3 acts in the same genetic pathway as ROS1 to prevent DNA hypermethylation and TGS. Gel mobility shift assays and analysis of ROS3 immunoprecipitate from plant extracts shows that ROS3 binds to small RNAs in vitro and in vivo. Immunostaining shows that ROS3 and ROS1 proteins co-localize in discrete foci dispersed throughout the nucleus. These results demonstrate a critical role for ROS3 in preventing DNA hypermethylation and suggest that DNA demethylation by ROS1 may be guided by RNAs bound to ROS3.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Proteínas de Unión al ARN/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética , Transcripción Genética
8.
Nature ; 447(7145): 735-8, 2007 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-17554311

RESUMEN

Epigenetic regulation involves reversible changes in DNA methylation and/or histone modification patterns. Short interfering RNAs (siRNAs) can direct DNA methylation and heterochromatic histone modifications, causing sequence-specific transcriptional gene silencing. In animals and yeast, histone H2B is known to be monoubiquitinated, and this regulates the methylation of histone H3 (refs 10, 11). However, the relationship between histone ubiquitination and DNA methylation has not been investigated. Here we show that mutations in an Arabidopsis deubiquitination enzyme, SUP32/UBP26, decrease the dimethylation on lysine 9 of H3, suppress siRNA-directed methylation of DNA and release heterochromatic silencing of transgenes as well as transposons. We found that Arabidopsis histone H2B is monoubiquitinated at lysine 143 and that the levels of ubiquitinated H2B and trimethyl H3 at lysine 4 increase in sup32 mutant plants. SUP32/UBP26 can deubiquitinate H2B, and chromatin immunoprecipitation assays suggest an association between H2B ubiquitination and release of silencing. These data suggest that H2B deubiquitination by SUP32/UBP26 is required for heterochromatic histone H3 methylation and DNA methylation.


Asunto(s)
Metilación de ADN , Endopeptidasas/metabolismo , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Ubiquitina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Elementos Transponibles de ADN/genética , Endopeptidasas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Metilación , Mutación/genética , Proteasas Ubiquitina-Específicas , Regulación hacia Arriba
9.
Curr Biol ; 17(1): 54-9, 2007 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-17208187

RESUMEN

The Arabidopsis DNA glycosylase/lyase ROS1 participates in active DNA demethylation by a base-excision pathway. ROS1 has been shown to be required for demethylating a transgene promoter. To determine the function of ROS1 in demethylating endogenous loci, we carried out bisulfite-sequencing analysis of several transposons and other genes in the ros1 mutant. In the wild-type, although CpG sites at the majority of these loci are heavily methylated, many of the CpXpG and CpXpX sites have low levels of methylation or are not at all methylated. However, these CpXpG and CpXpX sites become heavily methylated in the ros1 mutant. Associated with this increased DNA methylation, these loci show decreased expression in the ros1 mutant. Our results suggest that active DNA demethylation is important in pruning the methylation patterns of the genome, and even the normally "silent" transposons are under dynamic control by both methylation and demethylation. This dynamic control may be important in keeping the plant epigenome plastic so that it can efficiently respond to developmental and environmental cues.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Metilación de ADN , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Elementos Transponibles de ADN , Secuencia Rica en GC , Genoma de Planta , Mutación , Proteínas Nucleares/genética
10.
Cancer Discov ; 10(7): 1058-1077, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32341020

RESUMEN

Oncogenic KRAS (KRAS*) is a key tumor maintenance gene in pancreatic ductal adenocarcinoma (PDAC), motivating pharmacologic targeting of KRAS* and its effectors. Here, we explored mechanisms involving the tumor microenvironment (TME) as a potential basis for resistance to targeting KRAS*. Using the inducible Kras G12D;Trp53 -/- PDAC mouse model, gain-of-function screens of epigenetic regulators identified HDAC5 as the top hit enabling KRAS* independent tumor growth. HDAC5-driven escaper tumors showed a prominent neutrophil-to-macrophage switch relative to KRAS*-driven tumors. Mechanistically, HDAC5 represses Socs3, a negative regulator of chemokine CCL2, resulting in increased CCL2, which recruits CCR2+ macrophages. Correspondingly, enforced Ccl2 promotes macrophage recruitment into the TME and enables tumor recurrence following KRAS* extinction. These tumor-associated macrophages in turn provide cancer cells with trophic support including TGFß to enable KRAS* bypass in a SMAD4-dependent manner. Our work uncovers a KRAS* resistance mechanism involving immune cell remodeling of the PDAC TME. SIGNIFICANCE: Although KRAS* is required for PDAC tumor maintenance, tumors can recur following KRAS* extinction. The capacity of PDAC cancer cells to alter the TME myeloid cell composition to support KRAS*-independent tumor growth illuminates novel therapeutic targets that may enhance the effectiveness of therapies targeting KRAS* and its pathway components.See related commentary by Carr and Fernandez-Zapico, p. 910.This article is highlighted in the In This Issue feature, p. 890.


Asunto(s)
Oncogenes/fisiología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Cancer Discov ; 9(2): 248-263, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30373917

RESUMEN

Loss-of-function mutations in the retinoblastoma gene RB1 are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with RB1 mutation (RB1 mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases AURKA and AURKB showed the strongest RB1 association in this assay. LY3295668, an AURKA inhibitor with over 1,000-fold selectivity versus AURKB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against RB1 mut cancer cells and leads to durable regression of RB1 mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle-assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in RB1-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AURKA for mitotic exit and survival. SIGNIFICANCE: The identification of a synthetic lethal interaction between RB1 and AURKA inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AURKA kinase activity without myelosuppression, suggest a new approach for the treatment of RB1-deficient malignancies, including patients progressing on CDK4/6 inhibitors.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.


Asunto(s)
Aurora Quinasa A/antagonistas & inhibidores , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Proteínas de Unión a Retinoblastoma/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Proteínas de Unión a Retinoblastoma/genética , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Curr Biol ; 15(21): 1912-8, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16271867

RESUMEN

Mutations in the DNA glycosylase/lyase ROS1 cause transcriptional silencing of the linked RD29A-LUC and 35S-NPTII transgenes in Arabidopsis. We report here that mutations in the Arabidopsis RPA2 locus release the silencing of 35S-NPTII but not RD29A-LUC in the ros1 mutant background. The rpa2 mutation also leads to enhanced expression of some transposons. Neither DNA methylation nor siRNAs at any of the reactivated loci are blocked by rpa2. Histone H3 methylation at lysine 4 was increased and histone H3 methylation at lysine 9 was decreased at the 35S promoter in the ros1rpa2 mutant compared to the ros1 background. RPA2 encodes a nuclear protein similar to the second subunit of the replication protein A conserved from yeast to mammals. Ectopic expression of the Arabidopsis RPA2 could complement the yeast rfa2 (rpa2) mutant. These results suggest an essential role of RPA2 in the maintenance of transcriptional gene silencing at specific loci in a DNA-methylation-independent manner. In addition, we found that rpa2 mutants are hypersensitive to the genotoxic agent methyl methanesulphonate, and the RPA2 protein interacts with ROS1 in vitro and in vivo, suggesting that RPA2 also functions together with ROS1 in DNA repair.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Silenciador del Gen/fisiología , Mutación/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Secuencia de Bases , Inmunoprecipitación de Cromatina , Clonación Molecular , Secuencia Conservada/genética , Metilación de ADN , Reparación del ADN/genética , Reparación del ADN/fisiología , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Metilmetanosulfonato , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Transgenes/genética
13.
Plant Physiol Biochem ; 45(9): 637-46, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17761427

RESUMEN

Pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) enzymes are responsible for the operation of ethanolic fermentation pathway that appears to correlate to an extent with anoxia tolerance in plants. This study was undertaken with the objective of (a) analysing the rice pdc gene family and (b) altering the efficacy of the ethanolic fermentation process, through production of transgenic rice plants over- and under-expressing pyruvate decarboxylase (employing Ospdc1 gene from rice) as well as over-expressing alcohol dehydrogenase (employing Ghadh2 gene from cotton) proteins. Correlations noted in this study between the pattern of expression of the Pdc alpha-subunit and Ospdc2 transcript as well as between the Pdc beta-subunit and Ospdc1 transcript suggest the possibility that alpha-subunit is encoded by Ospdc2 and that beta-subunit is encoded by Ospdc1. The fact that levels of Pdc beta-subunit were particularly high in pUH-sPdc1 (plasmid construct designed for over-expression of Ospdc1) seedlings while levels of beta-subunit levels were negligible or lower in pUH-asPdc1 (plasmid construct designed for under-expression of Ospdc1) seedlings also support these observations. Transgenics raised for over-expression of Pdc and Adh and under-expression of Pdc were confirmed for the transgene presence and effects by PCR, Southern blotting, Northern blotting, Western blotting and isozyme assays. Pdc and Adh over-expressing rice transgenics at early seedling stage under unstressed control growth conditions showed slight, consistent advantage in root vigour as compared to that of wild-type seedlings.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Oryza/enzimología , Oryza/genética , Piruvato Descarboxilasa/metabolismo , Alcohol Deshidrogenasa/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/enzimología , Gossypium/genética , Oryza/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Piruvato Descarboxilasa/genética , Plantones/genética , Plantones/crecimiento & desarrollo
14.
Cancer Discov ; 6(1): 80-95, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26701088

RESUMEN

UNLABELLED: The signaling mechanisms between prostate cancer cells and infiltrating immune cells may illuminate novel therapeutic approaches. Here, utilizing a prostate adenocarcinoma model driven by loss of Pten and Smad4, we identify polymorphonuclear myeloid-derived suppressor cells (MDSC) as the major infiltrating immune cell type, and depletion of MDSCs blocks progression. Employing a novel dual reporter prostate cancer model, epithelial and stromal transcriptomic profiling identified CXCL5 as a cancer-secreted chemokine to attract CXCR2-expressing MDSCs, and, correspondingly, pharmacologic inhibition of CXCR2 impeded tumor progression. Integrated analyses identified hyperactivated Hippo-YAP signaling in driving CXCL5 upregulation in cancer cells through the YAP-TEAD complex and promoting MDSC recruitment. Clinicopathologic studies reveal upregulation and activation of YAP1 in a subset of human prostate tumors, and the YAP1 signature is enriched in primary prostate tumor samples with stronger expression of MDSC-relevant genes. Together, YAP-driven MDSC recruitment via heterotypic CXCL5-CXCR2 signaling reveals an effective therapeutic strategy for advanced prostate cancer. SIGNIFICANCE: We demonstrate a critical role of MDSCs in prostate tumor progression and discover a cancer cell nonautonomous function of the Hippo-YAP pathway in regulation of CXCL5, a ligand for CXCR2-expressing MDSCs. Pharmacologic elimination of MDSCs or blocking the heterotypic CXCL5-CXCR2 signaling circuit elicits robust antitumor responses and prolongs survival.


Asunto(s)
Quimiocina CXCL5/genética , Células Mieloides/inmunología , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Próstata/inmunología , Proteína Smad4/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Quimiocina CXCL5/metabolismo , Progresión de la Enfermedad , Vía de Señalización Hippo , Humanos , Masculino , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP
15.
FEBS Lett ; 579(26): 5889-98, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16162337

RESUMEN

DNA methylation is important for stable transcriptional gene silencing. DNA methyltransferases for de novo as well as maintenance methylation have been well characterized. However, enzymes responsible for active DNA demethylation have been elusive and several reported mechanisms of active demethylation have been controversial. There has been a critical need for genetic analysis in order to firmly establish an in vivo role for putative DNA demethylases. Mutations in the bifunctional DNA glycosylase/lyase ROS1 in Arabidopsis cause DNA hypermethylation and transcriptional silencing of specific genes. Recombinant ROS1 protein has DNA glycosylase/lyase activity on methylated but not unmethylated DNA substrates. Therefore, there is now strong genetic evidence supporting a base excision repair mechanism for active DNA demethylation. DNA demethylases may be critical factors for genome wide hypomethylation seen in cancers and possibly important for epigenetic reprogramming during somatic cell cloning and stem cell function.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Metilación de ADN , Silenciador del Gen , Proteínas Nucleares/fisiología , Transcripción Genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/química , ADN/química , ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Reparación del ADN , Genoma , Genoma de Planta , Heterocromatina/química , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química
16.
Cancer Res ; 75(6): 1091-101, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25736685

RESUMEN

Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K-AKT-MTOR pathway and by the activation of AXL, PDGFRa, and HER1-2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología
17.
Nat Commun ; 5: 5210, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25394905

RESUMEN

The process of cellular senescence generates a repressive chromatin environment, however, the role of histone variants and histone proteolytic cleavage in senescence remains unclear. Here, using models of oncogene-induced and replicative senescence, we report novel histone H3 tail cleavage events mediated by the protease Cathepsin L. We find that cleaved forms of H3 are nucleosomal and the histone variant H3.3 is the preferred cleaved form of H3. Ectopic expression of H3.3 and its cleavage product (H3.3cs1), which lacks the first 21 amino acids of the H3 tail, is sufficient to induce senescence. Further, H3.3cs1 chromatin incorporation is mediated by the HUCA histone chaperone complex. Genome-wide transcriptional profiling revealed that H3.3cs1 facilitates transcriptional silencing of cell cycle regulators including RB/E2F target genes, likely via the permanent removal of H3K4me3. Collectively, our study identifies histone H3.3 and its proteolytically processed forms as key regulators of cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , Histonas/fisiología , Catepsina L/metabolismo , Ciclo Celular/fisiología , Cromatina/metabolismo , Cromatina/fisiología , Factores de Transcripción E2F/metabolismo , Expresión Génica Ectópica/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Histonas/metabolismo , Humanos , Melanocitos/metabolismo , Melanocitos/fisiología , Nucleosomas/metabolismo , Nucleosomas/fisiología , Proteolisis , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología
18.
PLoS One ; 7(1): e29974, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22276135

RESUMEN

Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49f(high)/ALDH1A1(high)/H3K4/K27me3(low) subpopulation (CD49f+) of tumor cells. A strikingly similar CD49f(high)/H3K27me3(low) subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49f(high)/ALDH(high), label retaining cells (LRC) proliferated immediately in vivo, with time the CD49f(low)/ALDH(low), non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49f(high)/ALDH(high), label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2 phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f- cells can "reprogram" and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a "moving target" and their eradication might require more persistent strategies.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Células Madre Neoplásicas/patología , Animales , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Embrión de Pollo , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello
19.
EMBO J ; 26(6): 1691-701, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17332757

RESUMEN

Argonautes (AGOs) are conserved proteins that contain an RNA-binding PAZ domain and an RNase H-like PIWI domain. In Arabidopsis, except for AGO1, AGO4 and AGO7, the roles of seven other AGOs in gene silencing are not known. We found that a mutation in AGO6 partially suppresses transcriptional gene silencing in the DNA demethylase mutant ros1-1. In ago6-1ros1-1 plants, RD29A promoter short interfering RNAs (siRNAs) are less abundant, and cytosine methylation at both transgenic and endogenous RD29A promoters is reduced, compared to that in ros1-1. Interestingly, the ago4-1 mutation has a stronger suppression of the transcriptional silencing phenotype of ros1-1 mutant. Analysis of cytosine methylation at the endogenous MEA-ISR, AtREP2 and SIMPLEHAT2 loci revealed that the CpNpG and asymmetric methylation levels are lower in either of the ago6-1 and ago4-1 single mutants than those in the wild type, and the levels are the lowest in the ago6-1ago4-1 double mutant. These results suggest that AGO6 is important for the accumulation of specific heterochromatin-related siRNAs, and for DNA methylation and transcriptional gene silencing, this function is partly redundant with AGO4.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Metilación de ADN , Silenciador del Gen/fisiología , ARN Interferente Pequeño/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Secuencia de Bases , Northern Blotting , Clonación Molecular , Análisis por Conglomerados , Heterocromatina/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
20.
PLoS One ; 2(11): e1210, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18030344

RESUMEN

Post-translational modifications of histones play crucial roles in the genetic and epigenetic regulation of gene expression from chromatin. Studies in mammals and yeast have found conserved modifications at some residues of histones as well as non-conserved modifications at some other sites. Although plants have been excellent systems to study epigenetic regulation, and histone modifications are known to play critical roles, the histone modification sites and patterns in plants are poorly defined. In the present study we have used mass spectrometry in combination with high performance liquid chromatography (HPLC) separation and phospho-peptide enrichment to identify histone modification sites in the reference plant, Arabidopsis thaliana. We found not only modifications at many sites that are conserved in mammalian and yeast cells, but also modifications at many sites that are unique to plants. These unique modifications include H4 K20 acetylation (in contrast to H4 K20 methylation in non-plant systems), H2B K6, K11, K27 and K32 acetylation, S15 phosphorylation and K143 ubiquitination, and H2A K144 acetylation and S129, S141 and S145 phosphorylation, and H2A.X S138 phosphorylation. In addition, we found that lysine 79 of H3 which is highly conserved and modified by methylation and plays important roles in telomeric silencing in non-plant systems, is not modified in Arabidopsis. These results suggest distinctive histone modification patterns in plants and provide an invaluable foundation for future studies on histone modifications in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Cromatografía Líquida de Alta Presión , Metilación , Fosforilación , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA