Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Comput Assist Surg (Abingdon) ; 29(1): 2403444, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39301766

RESUMEN

Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.


Asunto(s)
Tabique Interatrial , Ecocardiografía Tridimensional , Método de Montecarlo , Fantasmas de Imagen , Punciones , Humanos , Tabique Interatrial/diagnóstico por imagen , Ecocardiografía Tridimensional/métodos , Cirugía Asistida por Computador/métodos , Cateterismo Cardíaco/métodos , Realidad Aumentada , Ultrasonografía Intervencional/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-31449012

RESUMEN

Spectral broadening in pulsed-wave Doppler caused by the transit-time effect deteriorates the frequency resolution and may cause overestimation of maximum velocities in high-velocity blood flow regions and for large beam-to-flow angles. Data-adaptive spectral estimators have been shown to provide improved frequency resolution, especially for small ensemble lengths, but offer little or no improvement when the transit-time effect dominates. In this work, a method is presented that combines a data-adaptive spectral estimation method, the power spectral Capon, and 2-D tracking Doppler to enable improved frequency resolution for both high and low velocities. For each velocity, a time signal is extracted by tracking scatterers over time and space to decrease the transit-time effect, and power spectral Capon is used for spectral estimation. The method is evaluated using simulations, flow phantom recordings, and recordings from healthy and stenotic carotid arteries. Simulation results showed that the spectral width was decreased by 60% compared to 2-D tracking Doppler for velocities around 2.3 m/s using 12 time samples. The reduction was estimated to be 66% using the flow phantom results for 0.85-m/s mean velocity. A 5-dB SNR gain was observed from the in vivo results compared with Welch's method. Computer simulations confirm that in the presence of velocity gradients or out-of-plane motion, the proposed method can be used to reduce spectral broadening by requiring shorter observation windows.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Ultrasonografía Doppler/métodos , Algoritmos , Velocidad del Flujo Sanguíneo/fisiología , Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
3.
Artículo en Inglés | MEDLINE | ID: mdl-29733274

RESUMEN

Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

4.
Artículo en Inglés | MEDLINE | ID: mdl-27824563

RESUMEN

Estimation of accurate maximum velocities and spectral envelope in ultrasound Doppler blood flow spectrograms are both essential for clinical diagnostic purposes. However, obtaining accurate maximum velocity is not straightforward due to intrinsic spectral broadening and variance in the power spectrum estimate. The method proposed in this paper for maximum velocity point detection has been developed by modifying an existing method-signal noise slope intersection, incorporating in it steps from an altered version of another method called geometric method. Adaptive noise estimation from the spectrogram ensures that a smooth spectral envelope is obtained postdetection of these maximum velocity points. The method has been tested on simulated Doppler signal with scatterers possessing a parabolic flow velocity profile constant in time, steady and pulsatile string phantom recordings, as well as in vivo recordings from uterine, umbilical, carotid, and subclavian arteries. The results from simulation experiments indicate a bias of less than 2.5% in maximum velocities when estimated for a range of peak velocities, Doppler angles, and SNR levels. Standard deviation in the envelope is low-less than 2% in the case of experiments done by varying the peak velocity and Doppler angle for steady phantom and simulated flow, and also less than 2% in the case of experiments done by varying SNR but keeping constant flow conditions for in vivo and simulated flow. Low variability in the envelope makes the prospect of using the envelope for automated blood flow measurements possible and is illustrated for the case of pulsatility index estimation in uterine and umbilical arteries.


Asunto(s)
Ultrasonografía Doppler/instrumentación , Ultrasonografía Doppler/métodos , Algoritmos , Velocidad del Flujo Sanguíneo/fisiología , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiología , Simulación por Computador , Humanos , Fantasmas de Imagen , Relación Señal-Ruido
5.
Artículo en Inglés | MEDLINE | ID: mdl-27824564

RESUMEN

Clutter rejection for color flow imaging (CFI) remains a challenge due to either a limited amount of temporal samples available or nonstationary tissue clutter. This is particularly the case for interleaved CFI and B-mode acquisitions. Low velocity blood signal is attenuated along with the clutter due to the long transition band of the available clutter filters, causing regions of biased mean velocity estimates or signal dropouts. This paper investigates how adaptive spectral estimation methods, Capon and blood iterative adaptive approach (BIAA), can be used to estimate the mean velocity in CFI without prior clutter filtering. The approach is based on confining the clutter signal in a narrow spectral region around the zero Doppler frequency while keeping the spectral side lobes below the blood signal level, allowing for the clutter signal to be removed by thresholding in the frequency domain. The proposed methods are evaluated using computer simulations, flow phantom experiments, and in vivo recordings from the common carotid and jugular vein of healthy volunteers. Capon and BIAA methods could estimate low blood velocities, which are normally attenuated by polynomial regression filters, and may potentially give better estimation of mean velocities for CFI at a higher computational cost. The Capon method decreased the bias by 81% in the transition band of the used polynomial regression filter for small packet size ( N=8 ) and low SNR (5 dB). Flow phantom and in vivo results demonstrate that the Capon method can provide color flow images and flow profiles with lower variance and bias especially in the regions close to the artery walls.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Ultrasonografía Doppler en Color/métodos , Adulto , Algoritmos , Velocidad del Flujo Sanguíneo , Arterias Carótidas/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Venas Yugulares/diagnóstico por imagen , Masculino , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA