Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(9)2019 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-31060211

RESUMEN

Sulfur recovery from organic molecules such as toxic sulfones is an actual problem, and its solution through the use of environmentally friendly and nature-like processes looks attractive for research and application. For the first time, the possible bioconversion of organic sulfones (benzo-and dibenzothiophene sulfones) to inorganic sulfide under anaerobic conditions with simultaneous biogas production from glucose within a methanogenesis process is demonstrated. Biogas with a methane content of 50.7%-82.1% was obtained without H2S impurities. Methanogenesis with 99.7%-100% efficiency and 97.8%-100% conversion of benzo- and dibenzothiophene sulfones (up to 0.45 mM) to inorganic sulfide were obtained in eight days by using a combination of various anaerobic biocatalysts immobilized in a poly(vinyl alcohol) cryogel. Pure cell cultures of sulfate-reducing bacteria and/or H2-producing bacteria were tested as additives to the methanogenic activated sludge. The immobilized activated sludge "enhanced" by bacterial additives appeared to retain its properties and be usable multiple times for the conversion of sulfones under batch conditions.


Asunto(s)
Bacterias/crecimiento & desarrollo , Sulfuros/metabolismo , Tiofenos/metabolismo , Anaerobiosis , Bacterias/metabolismo , Técnicas de Cultivo Celular por Lotes , Biodegradación Ambiental , Biocombustibles/microbiología , Metano
2.
Polymers (Basel) ; 15(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38232050

RESUMEN

Bifunctional catalysts are a major type of heterogeneous catalytic systems that have been widely investigated for biomass upgrading. In this work, Ru-catalysts based on sulfonated porous aromatic frameworks (PAFs) were used in the hydrodeoxygenation (HDO) of lignin-derived compounds: guaiacol, veratrole, and catechol. The relationship between the activity of metal nanoparticles and the content of acid sites in synthesized catalysts was studied. Herein, their synergy was demonstrated in the Ru-PAF-30-SO3H/5-COD catalyst. The results revealed that this catalytic system promoted partial hydrogenation of lignin-based compounds to ketones without any further transformations. The design of the Ru-PAF-30-SO3H/5-COD catalytic system opens a promising route to the selective conversion of lignin model compounds to cyclohexanone.

3.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267800

RESUMEN

The present review compiles the advances in the dendritic catalysis within the last two decades, in particular concerning heterogeneous dendrimer-based catalysts and their and application in various processes, such as hydrogenation, oxidation, cross-coupling reactions, etc. There are considered three main approaches to the synthesis of immobilized heterogeneous dendrimer-based catalysts: (1) impregnation/adsorption on silica or carbon carriers; (2) dendrimer covalent grafting to various supports (silica, polystyrene, carbon nanotubes, porous aromatic frameworks, etc.), which may be performed in a divergent (as a gradual dendron growth on the support) or convergent way (as a grafting of whole dendrimer to the support); and (3) dendrimer cross-linking, using transition metal ions (resulting in coordination polymer networks) or bifunctional organic linkers, whose size, polarity, and rigidity define the properties of the resulted material. Additionally, magnetically separable dendritic catalysts, which can be synthesized using the three above-mentioned approaches, are also considered. Dendritic catalysts, synthesized in such ways, can be stored as powders and be easily separated from the reaction medium by filtration/centrifugation as traditional heterogeneous catalysts, maintaining efficiency as for homogeneous dendritic catalysts.

4.
ACS Omega ; 7(14): 11788-11798, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449937

RESUMEN

Herein, we present a new type of high-performance catalyst for aerobic oxidation of organosulfur compounds based on tungsten carbide. The synthesis of tungsten carbide was performed via microwave irradiation of the precursors, which makes it possible to obtain a catalyst in just 15 min. The synthesized catalyst was investigated by a variety of physicochemical methods: X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, electron microscopy, and N2 adsorption/desorption. It was shown that active centers containing tungsten in the transition oxidation state (+4) play a key role in the activation of oxygen. The main factors influencing the conversion of dibenzothiophene (DBT) were investigated. It should be noted that 100% conversion of DBT can be achieved under relatively mild conditions: 120 °C, 3 h, 6 bar, and 0.5% wt catalyst. The catalyst retained its activity for at least six oxidation/regeneration cycles. The simplicity and speed of synthesis of the proposed catalyst in combination with its high activity and stability open broad prospects for its further use both for oxidative desulfurization and for other reactions of aerobic oxidation of organic substrates.

5.
ACS Omega ; 5(12): 6611-6618, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258896

RESUMEN

As- and Cl-containing impurities are highly detrimental to sulfided catalysts in hydrotreating processes. To prevent the irreversible loss of activity of the main sulfide catalysts by As and Cl contaminants, a protective double-layered guard bed catalyst is applied. Two types of mesoporous silica supports (SBA-15 and MCF) were used to obtain sorption-catalytic materials. The high specific surface area of the supports allowed for a significant increase in access to the active catalyst centers. The NiMo/SBA-15/Al2O3 and NiMg/MCF/Al2O3 sorption-catalytic materials demonstrated high activity and stability over 48 h for the simultaneous removal of As and Cl. The catalytic materials allowed for reducing the concentrations of As and Cl to less than 0.1 ppm in the diesel fraction under the following conditions: 5.0 MPa pressure, 2.0 h-1 LHSV, 300 L/L H2-to-substrate volume ratio, and 360 °C.

6.
ACS Omega ; 4(7): 12736-12744, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460396

RESUMEN

Mg, Ca, and Ba catalysts supported on structured mesoporous silica oxides types MCM-41 and Al-SBA-15 were synthesized and investigated in sulfone cracking for sulfur removal from oxidized diesel fuel. Functional materials and catalysts were characterized by low-temperature nitrogen adsorption/desorption, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy techniques. Catalytic tests were carried out in fixed-bed and batch reactors with a model compound dibenzothiophene sulfone and oxidized diesel fraction as a feed. MgO/MCM-41 and MgO/Al-MCM-41 possess high activity in sulfone cracking. The sulfur content in the diesel fraction decreases from initial 450 up to 100 ppmw. Catalysts can be regenerated for reuse in several cycles and may be potentially scaled up for industrial applications.

7.
ACS Appl Mater Interfaces ; 10(31): 26566-26575, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29979868

RESUMEN

Anchoring Rh complexes to the surface of a silica polyamine composite, which has a poly(allylamine) covalently grafted to the surface of amorphous silica gel, yielded a material that proved to be an effective and novel heterogeneous catalyst for hydroformylation of unsaturated compounds. Surface amino groups of the material were modified with phosphines by covalent and ionic coupling. The modified materials were then treated with Rh(acac)(CO)2, giving the catalysts K-1 and K-2. Catalysts were characterized by solid-state NMR spectroscopy, IR spectroscopy, XPS, TEM, and elemental analysis. The activity and stability of K-1 and K-2 were then studied for the hydroformylation of selected unsaturated compounds. Hydroformylation of terminal double bonds occurred selectively in the presence of internal double bonds. Characterization of the catalysts and the problems encountered with the supported catalysts are discussed. Catalyst K-1 is reusable and can be applied to the hydroformylation of linear olefins, styrene, 4-vinylcyclohexene, and dienes, as well as representative terpenes and other unsaturated hydrocarbons in a batch reactor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA