Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Wound Repair Regen ; 32(3): 292-300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415387

RESUMEN

The cornea, positioned at the forefront of the eye, refracts the light for focusing images on the retina. Damage to this transparent structure can lead to various visual disorders. The corneal endothelial cells (CECs) are crucial for transparency and homeostasis, but lack the ability to reproduce. Significant damage results in structure destruction and vision impairment. While extensive research has aimed at the restoring the corneal endothelial layer, including endothelial proliferation for functional monolayers remains challenging. Our previous studies confirmed the proliferative activity of stem cells from apical papilla-conditioned medium (SCAP-CM) on the retinal pigmented epithelium as a single cell layer. This study investigates how SCAP-CM influences the proliferation and migration of CECs. Our results introduced Matrigel, as a new matrix component for in vitro culture of CECs. Moreover, 60% of SCAP-CM was able to stimulate CEC proliferation as well as migrate to repair wound healing during 24 h. Confluent CECs also expressed specific markers, ATP1a1, ZO-1 and CD56, indicative of CEC characteristics, aligning with the recapitulation of differentiation when forming a homogenous monolayer at the same level of isolated CECs without in vitro culture. These findings suggested that SCAP-CM administration could be useful for future preclinical and clinical applications.


Asunto(s)
Proliferación Celular , Endotelio Corneal , Células Madre , Cicatrización de Heridas , Animales , Ratas , Medios de Cultivo Condicionados/farmacología , Endotelio Corneal/citología , Cicatrización de Heridas/fisiología , Células Cultivadas , Movimiento Celular , Diferenciación Celular , Lesiones de la Cornea/patología , Células Endoteliales
2.
J Biol Chem ; 298(5): 101855, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337799

RESUMEN

Human embryonic stem cells (hESCs) are vulnerable to cell death upon dissociation. Thus, dissociation is an obstacle in culturing, maintaining, and differentiating of hESCs. To date, apoptosis has become the focus of research into the nature of cell death triggered by cellular detachment; it remains baffling whether another form of cell death can occur upon dissociation in hESCs. Here, we demonstrate that iron accumulation and subsequently lipid peroxidation are responsible for dissociation-mediated hESC death. Moreover, we found that a decrease of glutathione peroxidase 4 because of iron accumulation promotes ferroptosis. Inhibition of lipid peroxidation (ferrostatin-1) or chelating iron (deferoxamine) largely suppresses iron accumulation-induced ferroptosis in dissociated hESCs. The results show that P53 mediates the dissociation-induced ferroptosis in hESCs, which is suppressed by pifithrin α. Multiple genes involved in ferroptosis are regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). In this study, solute carrier family 7 member 11 and glutathione peroxidase 4 are involved in GSH synthesis decreased upon dissociation as a target of Nrf2. In conclusion, our study demonstrates that iron accumulation as a consequence of cytoskeleton disruption appears as a pivotal factor in the initiation of ferroptosis in dissociated hESCs. Nrf2 inhibits ferroptosis via its downstream targets. Our study suggests that the antiferroptotic target might be a good candidate for the maintenance of hESCs.


Asunto(s)
Ferroptosis , Células Madre Embrionarias Humanas , Células Madre Embrionarias Humanas/citología , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
3.
Cell Mol Life Sci ; 79(7): 350, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672609

RESUMEN

Retinal degeneration (RD) is recognized as a frequent cause of visual impairments, including inherited (Retinitis pigmentosa) and degenerative (age-related macular) eye diseases. Dental stem cells (DSCs) have recently demonstrated a promising neuroprotection potential for ocular diseases through a paracrine manner carried out by extracellular vesicles (EVs). However, effective isolation of EVs is still challenging, and isolation methods determine the composition of enriched EVs and the subsequent biological and functional effects. In the present study, we assessed two enrichment methods (micro-electromechanical systems and ultrafiltration) to isolate the EVs from stem cells from apical papilla (SCAP). The size distribution of the corresponding isolates exhibited the capability of each method to enrich different subsets of EVs, which significantly impacts their biological and functional effects. We confirmed the neuroprotection and anti-inflammatory capacity of the SCAP-EVs in vitro. Further experiments revealed the possible therapeutic effects of subretinal injection of SCAP-EVs in the Royal College of Surgeons (RCS) rat model. We found that EVs enriched by the micro-electromechanical-based device (MEMS-EVs) preserved visual function, reduced retinal cell apoptosis, and prevented thinning of the outer nuclear layer (ONL). Interestingly, the effect of MEMS-EVs was extended to the retinal ganglion cell/retinal nerve fiber layer (GCL/RNFL). This study supports the use of the microfluidics approach to enrich valuable subsets of EVs, together with the choice of SCAP as a source to derive EVs for cell-free therapy of RD.


Asunto(s)
Vesículas Extracelulares , Fármacos Neuroprotectores , Degeneración Retiniana , Animales , Humanos , Ratas , Retina , Degeneración Retiniana/terapia , Células Madre
4.
J Transl Med ; 20(1): 572, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476500

RESUMEN

Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.


Asunto(s)
Degeneración Retiniana , Humanos , Degeneración Retiniana/terapia
5.
Electrophoresis ; 42(20): 2018-2026, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34013529

RESUMEN

Extracellular vesicles (EVs) are cell-derived nanoscale vesicles involved in intracellular communication and the transportation of biomarkers. EVs released by mesenchymal stem cells have been recently reported to play a role in cell-free therapy of many diseases. However, the demand for better research tools to replace the tedious conventional methods used to study EVs is getting stronger. EVs' manipulation using alternating current (AC) electrokinetic forces in a microfluidic device has appeared to be a reliable and sensitive diagnosis and trapping technique. Given that different AC electrokinetic forces may contribute to the overall motion of particles and fluids in a microfluidic device, EVs' electrokinetic trapping must be examined considering all dominant forces involved depending on the experimental conditions. In this paper, AC electrokinetic trapping of EVs using an interdigitated electrode arrays is investigated. A 2D numerical simulation incorporating the two significant AC electrokinetic phenomena (Dielectrophoresis and AC electroosmosis) has been performed. Theoretical predictions are then compared with experimental results and allow for a plausible explanation of observations inconsistent with DEP theory. It is demonstrated that the inconsistencies can be attributed to a significant extent to the contribution of the AC electroosmotic effect.


Asunto(s)
Pulpa Dental , Técnicas Electroquímicas , Vesículas Extracelulares , Modelos Químicos , Células Madre
6.
J Cell Physiol ; 234(4): 4256-4266, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30191983

RESUMEN

Research that pertains to the molecular mechanisms involved in retinal pigment epithelial (RPE) development can significantly contribute to cell therapy studies. The effects of periocular mesenchymal cells on the expansion of RPE cells remain elusive. We have examined the possible proliferative role of hepatocyte growth factor (HGF) as a mesenchymal cell secretory factor against human embryonic stem cell derived RPE (hESC-RPE). We found that the conditioned medium of human mesenchymal stem cells from apical papilla and/or exogenous HGF promoted proliferation of the hESC-RPE cells as single cells and cell sheets, in addition to rabbit RPE sheets in vitro. Blockage of HGF signaling by HGF receptor inhibitor, PHA-665752, inhibited proliferation of hESC-RPE cells. However, differentiation of hESCs and human-induced pluripotent stem cells to a rostral fate and eye-field specification was unaffected by HGF. Our in vivo analysis showed HGF expression in periocular mesenchymal cells after optic cup formation in chicken embryos. Administration of HGF receptor inhibitor at this developmental stage in chicken embryos led to reduced eye size and disorganization of the RPE sheet. These findings suggested that HGF administration could be beneficial for obtaining higher numbers of hESC-RPE cells in human preclinical and clinical trials.


Asunto(s)
Proliferación Celular , Células Epiteliales/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina , Epitelio Pigmentado de la Retina/metabolismo , Adolescente , Animales , Diferenciación Celular , Embrión de Pollo , Medios de Cultivo Condicionados/metabolismo , Ojo/embriología , Ojo/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-met/metabolismo , Conejos , Vías Secretoras , Transducción de Señal , Adulto Joven
7.
Differentiation ; 101: 8-15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29574166

RESUMEN

Recently, we have found that human stem cells from apical papilla (SCAP) show a stromal cell-derived inducing activity (SDIA). To examine SDIA competence for retinal cells differentiation, we co-cultured SCAP with human pluripotent stem cells (hPSCs). In comparison with Matrigel-cultured hPSCs, SCAP significantly induces hPSCs to differentiate into rostral neural cells as demonstrated by upregulation of OTX2 and PAX6 and down-regulation of EN1, HOXB4 and HOXC8. Furthermore, the differentiated cells on SCAP significantly expressed eye-field markers, RAX, PAX6, LHX2 and SIX3 and showed five folds pigmented colonies. The generated hPSC-retinal pigmented epithelium (RPE) was hexagonal and highly expressed related markers, ZO-1, RPE65, BEST, CRALBP and MITF. They were able to phagocytose latex beads. Moreover, the assessment of the isolated neural tube-like structures on SCAP showed the expression of retinal progenitor cells (RPCs) - SIX3, RAX, and PAX6. SCAP highly expressed DKK3 and SFRP2, Wnt inhibitor factors and their target genes, Cyclin D1 and c-Myc were down-regulated significantly on SCAP. These results showed SCAP promoted the differentiation of hPSCs into retinal cells (RPE and RPCs) possibly through inhibition of Wnt signaling pathway. This simple and efficient approach provides human RPE generation for developing therapies for diseases such as age-related macular degeneration.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes/citología , Retina/citología , Epitelio Pigmentado de la Retina/citología , Técnicas de Cultivo de Célula/métodos , Línea Celular , Células Cultivadas , Humanos
8.
Cell Mol Neurobiol ; 34(5): 715-25, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24706335

RESUMEN

FNDC5 (also termed PEP) gene encodes a type I membrane protein which is cleaved and secreted as Irisin hormone. We have identified mouse putative core promoter of FNDC5 and characterized its activity. FNDC5 is located within mouse chromosome 4, spans about 7,534 bp, and consists of 6 exons. The mouse FNDC5 promoter is TATA-less and lacks a consensus initiator sequence. In silico analyses revealed that the core promoter (-561/+101 with respect to translation start site) is located in a GC-rich domain (approximately 70.01 %) with one CpG island as a promoter index and several GC box factors including GC/SP1 which is necessary for transcription of TATA-less promoters. The core promoter showed a lower activity than CMV promoter in CHO and P19 cell lines when located upstream of EGFP CDS in an appropriate expression vector. Data implicated that both exon 1 and intron 1 of the gene are included in the core promoter. Upon treating with retinoic acid, FNDC5 expression was upregulated during embryoid body formation and decreased slowly at final stage of neural differentiation when neurospheres emerged. However, Noggin induction induced up regulation of FNDC5 expression at final stage of neural differentiation. In conclusion, stage dependent expression of FNDC5 is affected by neural induction method used for neural differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Clonación Molecular/métodos , Fibronectinas/fisiología , Neuronas/fisiología , Regiones Promotoras Genéticas/fisiología , Proteína de Unión a TATA-Box/fisiología , Animales , Secuencia de Bases , Células CHO , Cricetulus , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular
9.
Biomed Mater ; 19(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38181445

RESUMEN

Ciliary neurotrophic factor (CNTF) promotes survival and/or differentiation of a variety of neuronal cells including retinal ganglion cells (RGCs). Delivery of CNTF requires a suitable medium capable of mediating diffusion and premature release of CNTF within the target tissue. Polymeric tissue-engineered scaffolds have been readily used as substrates for cell transplantation, expansion, and differentiation and, as carriers of cell growth factors. Their functions to CNTF release for RGC proliferation have remained so far unexplored, especially to CNTF affinity to the scaffold and subsequent RGC fate. Electrospunpoly(glycerol sebacate)/poly(ϵ-caprolactone) (PGS/PCL) biopolymer scaffolds have recently shown promising results in terms of supporting regeneration of RGC neurites. This work explores covalent immobilization of CNTF on PGS/PCL scaffold and the way immobilised CNTF mediates growth of RGC axons on the scaffold. Anex-vivothree-dimensional model of rodent optic nerve on PGS/PCL revealed that RGC explants cultured in CNTF mediated environment increased their neurite extensions after 20 d of cell culture employing neurite outgrowth measurements. The CNTF secretion on PGS/PCL scaffold was found bio-mimicking natural extracellular matrix of the cell target tissue and, consequently, has shown a potential to improve the overall efficacy of the RGC regeneration process.


Asunto(s)
Factor Neurotrófico Ciliar , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Axones/fisiología , Neuritas/metabolismo , Proliferación Celular , Regeneración Nerviosa/fisiología , Supervivencia Celular/fisiología
10.
Differentiation ; 83(1): 60-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22099177

RESUMEN

Peroxisome proliferator activated receptor γ, belongs to PPARs, which exerts various metabolic functions including differentiation process. To testify the importance of PPARγ in neural differentiation of mouse embryonic stem cells (mESCs), its expression level was assessed. Data revealed an elevation in expression level of PPARγ when neural precursors (NPs) are formed upon retinoic acid treatment. Thus, involvement of PPARγ in two stages of neural differentiation of mESCs, during and post-NPs formation was examined by application of its agonist and antagonist. Our results indicated that PPARγ inactivation via treatment with GW9662 during NPs formation, reduced expression of neural precursor and neural (neuronal and astrocytes) markers. However, PPARγ inactivation by antagonist treatment post-NPs formation stage only decreased the expression of mature astrocyte marker (Gfap) suggesting that inactivation of PPARγ by antagonist decreased astrocyte differentiation. Here, we have demonstrated the stage dependent role of PPARγ modulation on neural differentiation of mESCs by retinoic acid treatment for the first time.


Asunto(s)
Astrocitos/citología , Neurogénesis/genética , PPAR gamma/metabolismo , Anilidas/farmacología , Animales , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/citología , PPAR gamma/genética , Rosiglitazona , Tiazolidinedionas/farmacología , Tretinoina/farmacología
11.
Cell Signal ; 106: 110654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36906163

RESUMEN

Human embryonic stem cells (hESCs) have the capacity of self-renewal as well as differentiation towards three germ layer derivatives which makes them as a source of therapeutic application. hESCs are tremendously prone to cell death after dissociation into single cells. Therefore, it technically hinders their applications. Our recent study has revealed that hESCs can be prone to ferroptosis which differs from those in earlier explorations reporting that cellular detachment results in a process cited as anoikis. Ferroptosis occurs via increasing intracellular iron. Therefore, this form of programmed cell death is distinct from other cell deaths in terms of biochemistry, morphology, and genetics. Ferroptosis is found by excessive iron which plays an important part role in reactive oxygen species (ROS) generation through the Fenton reaction as a cofactor. Many genes are related to ferroptosis under the control of nuclear factor erythroid 2-related factor 2 (Nrf2) which is a transcription factor regulating the expression of genes to protect cells from oxidative stress. Nrf2 was demonstrated to take a perilous role in the suppression of ferroptosis by regulating the iron, antioxidant defense enzymes, usage, and restoration of glutathione, thioredoxin, and NADPH. Mitochondrial function is another target of Nrf2 to control cell homeostasis through the modulation of ROS production. In this review, we will give a succinct overview of lipid peroxidation and discuss the major players in the ferroptotic cascade. Additionally, we discussed the important role of the Nrf2 signaling pathway in mediating lipid peroxidation and ferroptosis, with a focus on known Nrf2 target genes that inhibit these processes and their possible role in hESCs.


Asunto(s)
Ferroptosis , Células Madre Embrionarias Humanas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hierro/metabolismo
12.
Stem Cell Rev Rep ; 18(5): 1789-1808, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35141862

RESUMEN

Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.


Asunto(s)
Células Madre Pluripotentes , Retículo Endoplásmico/metabolismo , Glucólisis/fisiología , Mitocondrias/metabolismo , Oxidación-Reducción
13.
Cell J ; 24(3): 127-132, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35451582

RESUMEN

Objective: Degeneration of the photoreceptors due to retinal disorders can affect vision, and even lead to blindness. Recently therapeutic progress in retinal degeneration, using human embryonic stem cells (hESCs), has been facing technical challenges, demanding the development of simple and standardized protocols. In addition to the designing of the protocols, characterization of the obtained cells is highly required for confirming the reliability of the applied methods for future medical applications. Previously, we showed that human stem cells from apical papilla (SCAP) have stromal cell-derived inducing activity (SDIA). Materials and Methods: In this experimental study, we developed an efficient retinal differentiation protocol, based on the co-culture of confluent hESCs and SCAP in the absence of exogenous molecules, such as activators or inhibitors of molecular signaling pathways. This experimental procedure resulted in the generation of self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs) within 4 weeks. Results: We have focused on the characterization of the derived RPCs, as a crucial step towards further verification of the efficiency of our previously suggested protocol. The differentiated cells expressed eye-field markers, PAX6, RAX, LHX2, and SIX3, and also generated neurospheres by a floating culture system for one week. Conclusion: We have reported that the treatment of hESC-derived RPCs by the Notch pathway-inhibitor induced the generation of photoreceptor precursor cells (PPCs). The presented method demonstrates the fact that a co-culture of hESCs and SCAP without exogenous molecules provides an efficient approach to produce RPCs for the treatment of retinal disease, and act as an in vitro model for the development of human retina.

14.
Life Sci ; 291: 120273, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016877

RESUMEN

AIM: Eye organoids are 3D models of the retina that provide new possibilities for studying retinal development, drug toxicity and the molecular mechanisms of diseases. Although there are several protocols that can be used to generate functional tissues, none have been used to assemble human retinal organoids containing mesenchymal stem cells (MSCs). MAIN METHODS: In this study we intend to assess the effective interactions of MSCs and human embryonic stem cells (hESCs) during retinal organoid formation. We evaluated the inducing activities of bone marrow MSCs (BM-MSCs), trabecular meshwork (TM), and stem cells from apical papilla (SCAP)-derived MSCs in differentiation of hESCs in a three-dimensional (3D) direct co-culture system. KEY FINDINGS: In comparison with the two other MSC sources, the induction potential of SCAP was confirmed in the co-culture system. Although the different SCAP cell ratios did not show any significant morphology changes during the first seven days, increasing the number of SCAPs improved formation of the optic vesicle (OV) structure, which was confirmed by assessment of specific markers. The OVs subsequently developed to an optic cup (OC), which was similar to the in vivo environment. These arrangements expressed MITF in the outer layer and CHX10 in the inner layer. SIGNIFICANCE: We assessed the inducing activity of SCAP during differentiation of hESCs towards a retinal fate in a 3D organoid system. However, future studies be conducted to gather additional details about the development of the eye field, retinal differentiation, and the molecular mechanisms of diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Encía/citología , Retina/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Ojo/citología , Encía/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Organoides/citología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Retina/crecimiento & desarrollo
15.
J Biosci Bioeng ; 133(6): 579-586, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35339352

RESUMEN

Tissue-specific extracellular matrix (ECM) plays a critical role in cell survival and homeostasis, which are particularly essential for directing differentiation of different complex tissues such as retina. However, ECM maintenance should be considered to design an effective therapeutic strategy for retina regeneration. To achieve this, cell sheet engineering has emerged as a growing approach to closely reconstruct basal membrane of cells through a scaffold-free manner. Several irreversible sight-threatening diseases are characterized by the dysfunction and lose of retinal pigment epithelium (RPE), leading to vision loss and eventually total blindness in patients. According to impressive developments in achievement of RPE from human embryonic stem cells (hESCs), we obtained RPE cells without any extrinsic factors in a co-culture system, and cultured them on a temporary alginate hydrogel substrate. Subsequently, Arg-Gly-Asp (RGD) peptide was superficially immobilized on the upper layer of hydrogel to improve cell attachment before harvesting sheet layer. RPE cell sheet layer was released by treating pre-seeded hydrogels with sodium citrate as a calcium chelating agent and characterized in both in vitro and in vivo models. RPE sheets formed tight junction and expressed high levels of retina structural markers such as ZO-1, Bestrophin and Collagen type IV. One week after in vivo transplantation of RPE sheet, cells survived in the subretinal space, indicating that our harvesting method is non-invasive. To sum up, we introduced a unique scaffold-free method for RPE cell sheet engineering, which can find potential use for future therapeutic purposes.


Asunto(s)
Alginatos , Epitelio Pigmentado de la Retina , Alginatos/química , Diferenciación Celular , Humanos , Hidrogeles/química , Oligopéptidos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
16.
Mater Sci Eng C Mater Biol Appl ; 120: 111746, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545888

RESUMEN

There is a great need for tissue engineering constructs with the ability to modulate stem cell behavior. The initial adhesion, growth and differentiation of stem cell are a key strategy in bone tissue engineering and it can be controlled through biomaterial-cell interface. Here we engineered a polycaprolactone/gelatin/bioactive glass (PCL/GT/BG) nanocomposite scaffold coated with Fibronectin (FN) as a potential candidate to aid the bone regeneration process by giving cells a temporary template to grow into. For this purpose, initially BG nanoparticles (nBG) of 70 ± 15 nm were synthesized, characterized and then impregnated into PCL/GT matrix to create a nanocomposite fibrous mesh. An optimized structure was selected based on fiber uniformity, diameter, and the mechanical properties. Cell adhesion, growth, and the expression of osteogenic-related genes as a result of FN tethering, through specific surface interactions, was evaluated. Furthermore, the potential of optimized nanofiberous structure as a drug delivery vehicle for the local release of therapeutic agents was studied by using amoxicillin as a model drug. The release profile revealed that around 70% of drug was released in an hour for non-crosslinked fibers (burst release) followed by a gradual release up to 72 h. The release profile was steadier for crosslinked fibers. The scaffold also showed an antibacterial effect against ubiquitous gram-positive Staphylococcus aureus. The current study provides an insight for future researchers who aim to create nanocomposite materials as multifunctional scaffolds for bone tissue engineering applications.


Asunto(s)
Osteogénesis , Andamios del Tejido , Materiales Biocompatibles , Diferenciación Celular , Ingeniería de Tejidos
17.
BMC Mol Cell Biol ; 22(1): 40, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34348662

RESUMEN

BACKGROUND: In retinal degenerative disease, progressive and debilitating conditions result in deterioration of retinal cells and visual loss. In human, retina lacks the inherent capacity for regeneration. Therefore, regeneration of retinal layer from human retinal progenitor cells (hRPCs) is a challenging task and restricted in vitro maintenance of hRPCs remains as the main hurdle. Retina and anterior neural fold homeobox gene (RAX) play critical roles in developing retina and maintenance of hRPCs. In this study, for the first time regulatory regions of human RAX gene with potential promoter activity were experimentally investigated. RESULTS: For this purpose, after in silico analysis of regulatory regions of human RAX gene, the expression of EGFP reporter derived by putative promoter sequences was first evaluated in 293 T cells and then in hRPCS derived from human embryonic stem cells. The candidate region (RAX-3258 bp) showed the highest EGFP expression in hRPCs. This reporter construct can be used for in vitro monitoring of hRPC identity and verification of an efficient culture medium for maintenance of these cells. CONCLUSIONS: Furthermore, our findings provide a platform for better insight into regulatory regions of human RAX gene and molecular mechanisms underlying its vital functions in retina development.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas/fisiología , Retina/citología , Células Madre/fisiología , Factores de Transcripción/genética , Receptores ErbB/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Plásmidos , Retina/crecimiento & desarrollo , Retina/metabolismo , Factores de Transcripción/metabolismo
18.
Acta Biomater ; 126: 238-248, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33771718

RESUMEN

The stem cell-based retinal ganglion cells (RGCs) replacement therapy offers a potential to restore vision in progressive optic neuropathies including glaucoma by replacing degenerated RGCs and by simulating axonal regeneration. Injured optic nerve axons do not regenerate owing to the limited intrinsic capacity of the neurons and the inhibitory environment at the injury site. Polymeric tissue scaffolds are able to modulate the physical environment while providing structural support for transplanted cells, however, their application specific to the RGC generation has been far from conclusive. The successful generation of clinically safe and functional RGCs that can appropriately integrate into the hosts' retinas still remain largely unresolved. Our study reports on a process that enables generation of RGCs from human embryonic stem cells (hESCs) that is simple, straightforward and repeatable and, investigates the influence of the aligned poly(glycerol sebacate) (PGS)/poly(ε-caprolactone) (PCL) scaffold on this differentiation process. Our findings demonstrate that PGS/PCL scaffold promotes differentiation of hESCs into RGC-like cells possibly by the simulation of cell active environmental signalling and, facilitates the growth of RGCs neurites along their lengths. STATEMENT OF SIGNIFICANCE: Glaucoma can lead to the degeneration of retinal ganglion cells (RGCs), with consequential vision loss. RGCs are incapable of self-renewal, replacement of diseased RGCs with healthy cells has been a goal to restore vision in glaucoma patients. In this regard, stem cell RGC replacement therapy has been shown to improve vision in animal models of glaucoma, which could be facilitated by using tissue-engineered polymeric scaffolds. In this study, we generated homogenous stem cell-derived RGCs via a straightforward differentiation protocol and evaluated the effects of PGS/PCL scaffold on RGCs differentiation and growth of RGCs neurites. Our study contributes to the knowledge on how biomaterial scaffolds are able to support the regeneration of RGC neurites (i.e., axons or dendrites) as a part of a possible future clinical therapy for the treatment of glaucoma.


Asunto(s)
Células Madre Embrionarias Humanas , Células Ganglionares de la Retina , Animales , Axones , Diferenciación Celular , Humanos , Nervio Óptico
19.
Biotechnol Lett ; 32(6): 781-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20213527

RESUMEN

Schwann cells (SCs) can be used to repair both the peripheral and central nervous systems. Therefore, establishment of a procedure to obtain activated, highly proliferative SCs, in an appropriate time for clinical applications, is a prerequisite. Purification is complicated by contamination with fibroblasts which often become the predominant cell type in an in vitro SC culture. This study describes a novel and efficient method to enrich SCs by utilizing the differential detachment properties of the two cell types. In culture, cells were treated with two different media and the chelator, EGTA, which detached SCs faster than fibroblasts and allowed for easy isolation of SCs. Within seven days, high yields of SCs with a purity of greater than 99% were achieved. This was confirmed by immunostaining characterization and flow-cytometric analyses using an antibody against the p75 low affinity nerve growth factor receptor (p75LNGFR). The entire procedure was completed in approximately 21 days. This method has the advantage of being technically easier, faster, and more efficient than other previously described methods. An SC culture that was about 99% homogenous was achieved.


Asunto(s)
Células de Schwann/fisiología , Nervio Ciático/citología , Animales , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Células Cultivadas , Quelantes/metabolismo , Medios de Cultivo/química , Ácido Egtácico/metabolismo , Ratas , Ratas Wistar
20.
Int J Nanomedicine ; 15: 10029-10043, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335393

RESUMEN

PURPOSE: Despite the significant advances in modeling of biomechanical aspects of cell microenvironment, it remains a major challenge to precisely mimic the physiological condition of the particular cell niche. Here, the metal-organic frameworks (MOFs) have been introduced as a feasible platform for multifactorial control of cell-substrate interaction, given the wide range of physical and mechanical properties of MOF materials and their structural flexibility. RESULTS: In situ crystallization of zeolitic imidazolate framework-8 (ZIF-8) on the polydopamine (PDA)-modified membrane significantly raised surface energy, wettability, roughness, and stiffness of the substrate. This modulation led to an almost twofold increment in the primary attachment of dental pulp stem cells (DPSCs) compare to conventional plastic culture dishes. The findings indicate that polypropylene (PP) membrane modified by PDA/ZIF-8 coating effectively supports the growth and proliferation of DPSCs at a substantial rate. Further analysis also displayed the exaggerated multilineage differentiation of DPSCs with amplified level of autocrine cell fate determination signals, like BSP1, BMP2, PPARG, FABP4, ACAN, and COL2A. Notably, osteogenic markers were dramatically overexpressed (more than 100-folds rather than tissue culture plate) in response to biomechanical characteristics of the ZIF-8 layer. CONCLUSION: Hence, surface modification of cell culture platforms with MOF nanostructures proposed as a powerful nanomedical approach for selectively guiding stem cells for tissue regeneration. In particular, PP/PDA/ZIF-8 membrane presented ideal characteristics for using as a barrier membrane for guided bone regeneration (GBR) in periodontal tissue engineering.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Regeneración Tisular Dirigida/métodos , Membranas Artificiales , Polipropilenos/química , Polipropilenos/farmacología , Zeolitas/química , Diferenciación Celular/efectos de los fármacos , Indoles/química , Osteogénesis/efectos de los fármacos , Polímeros/química , Células Madre/citología , Células Madre/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA