Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 112(10): 2236-2247, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35671479

RESUMEN

The highly heterogeneous nature of Botrytis cinerea provides adaptive benefits to variable environmental regimes. Disentangling pathogen population structure in anthropogenic agroecosystems is crucial to designing more effective management schemes. Herein, we studied how evolutionary forces exerted in different farming systems, in terms of agrochemicals-input, shape B. cinerea populations. In total, 360 B. cinerea isolates were collected from conventional and organic, strawberry and tomato farms in Cyprus and Greece. The occurrence and frequency of sensitivities to seven botryticides were estimated. Results highlighted widespread fungicide resistance in conventional farms since only 15.5% of the isolates were sensitive. A considerable frequency of fungicide-resistant isolates was also detected in the organic farms (14.9%). High resistance frequencies were observed for boscalid (67.7%), pyraclostrobin (67.3%), cyprodinil (65.9%), and thiophanate-methyl (61.4%) in conventional farms, while high levels of multiple fungicide resistance were also evident. Furthermore, B. cinerea isolates were genotyped using a set of seven microsatellite markers (simple sequence repeat [SSR] markers). Index of association analyses (Ia and rBarD) suggest asexual reproduction of the populations, even though the mating-type idiomorphs were equally distributed, indicating frequency-dependent selection. Fungicide resistance was correlated with farming systems across countries and crops, while SSRs were able to detect population structure associated with resistance to thiophanate-methyl, pyraclostrobin, boscalid, and cyprodinil. The expected heterozygosity in organic farms was significantly higher than in conventional, suggesting the absence of selective pressure that may change the allelic abundance in organic farms. However, genetic variance among strawberry and tomato populations was high, ranking host specificity higher than other selection forces studied.


Asunto(s)
Fragaria , Fungicidas Industriales , Compuestos de Bifenilo , Botrytis/genética , Chipre , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Grecia , Niacinamida/análogos & derivados , Agricultura Orgánica , Enfermedades de las Plantas , Estrobilurinas , Tiofanato
2.
J Fungi (Basel) ; 10(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276018

RESUMEN

A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal strains were isolated from diseased vines. Morphological, physiological and molecular (5.8S rRNA gene-ITS sequencing) analyses revealed that isolates belonged to 35 distinct fungal genera, including well-known (e.g., Botryosphaeria sp., Diaporthe spp., Eutypa sp., Diplodia sp., Fomitiporia sp., Phaeoacremonium spp., Phaeomoniella sp.) and lesser-known (e.g., Neosetophoma sp., Seimatosporium sp., Didymosphaeria sp., Kalmusia sp.) grapevine wood inhabitants. The GTDs-inducing population structure differed significantly among the discrete geographical zones. Phaeomoniella chlamydospora (26.62%, n = 70), Diaporthe spp. (18.25%, n = 48) and F. mediterranea (10.27%, n = 27) were the most prevalent in Heraklion, whereas D. seriata, Alternaria spp., P. chlamydospora and Fusarium spp. were predominant in Nemea (central Greece). In Amyntaio and Kavala (northern Greece), D. seriata was the most frequently isolated species (>50% frequency). Multi-genes (rDNA-ITS, LSU, tef1-α, tub2, act) sequencing of selected isolates, followed by pathogenicity tests, revealed that Neosetophoma italica, Seimatosporium vitis, Didymosphaeria variabile and Kalmusia variispora caused wood infection, with the former being the most virulent. To the best of our knowledge, this is the first report of N. italica associated with GTDs worldwide. This is also the first record of K. variispora, S. vitis and D. variabile associated with wood infection of grapevine in Greece. The potential associations of disease indices with vine age, cultivar, GTD-associated population structure and the prevailing meteorological conditions in different viticultural zones in Greece are presented and discussed.

3.
Front Microbiol ; 11: 600393, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33510723

RESUMEN

Bacillus spp. MBI 600 is a gram-positive bacterium and is characterized as a PGPR strain involved in plant growth promotion and control of various plant pathogens which has recently been introduced into the agricultural practice. In this study we performed a Next Generation Sequencing analysis, to analyze the full genome of this microorganism and to characterize it taxonomically. Results showed that MBI 600 strain was phylogenetically close to other Bacillus spp. strains used as biocontrol agents and identified as B. subtilis. GOG analysis showed clusters contributed to secondary metabolites production such as fengycin and surfactin. In addition, various genes which annotated according to other plant-associated strains, showed that play a main role in nutrient availability from soil. The root colonization ability of MBI 600 strain was analyzed in vivo with a yellow fluorescence protein (yfp) tag. Confocal laser scanning microscopy of cucumber roots treated with yfp-tagged MBI 600 cells, revealed that the strain exhibits a strong colonization ability of cucumber roots, although it is affected significantly by the growth substrate of the roots. In vitro and in planta experiments with MBI 600 strain and F. oxysporum f.sp. radicis cucumerinum and P. aphanidernatum, showed a high control ability against these soilborne pathogens. Overall, our study demonstrates the effectiveness of MBI 600 in plant growth promotion and antagonism against different pathogens, highlighting the use of this microorganism as a biocontrol agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA