Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(9): 5114-5124, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36848504

RESUMEN

Palladium-silver-based alloy catalysts have a great potential for CO-free hydrogen production from formic acid for fuel cell applications. However, the structural factors affecting the selectivity of formic acid decomposition are still debated. Herein, the decomposition pathways of formic acid on Pd-Ag alloys with different atomic configurations have been investigated to identify the alloy structures yielding high H2 selectively. Several PdxAg1-x surface alloys with various compositions were generated on a Pd(111) single crystal; their atomic distribution and electronic structure were determined by a combination of infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). It was established that the Ag atoms with Pd neighbors are electronically altered, and the degree of alteration correlates with the number of nearest Pd. Temperature-programmed reaction spectroscopy (TPRS) and DFT demonstrated that the electronically altered Ag domains create a new reaction pathway that selectively dehydrogenates formic acid. In contrast, Pd monomers surrounded by Ag are demonstrated to have a similar reactivity compared to pristine Pd(111), yielding CO and H2O in addition to the dehydrogenation products. However, they bind to the produced CO weaker than pristine Pd, demonstrating an enhancement in resistance to CO poisoning. This work therefore shows that surface Ag domains modified by interaction with subsurface Pd are the key active sites for selective decomposition of formic acid, while surface Pd atoms are detrimental to selectivity. Hence, the decomposition pathways can be tailored for CO-free H2 production on Pd-Ag alloy systems.

2.
Phys Chem Chem Phys ; 22(11): 6202-6209, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32129370

RESUMEN

We investigated the growth and auto-oxidation of Pd deposited onto a AgOx single-layer on Ag(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Palladium initially grows as well-dispersed, single-layer clusters that adopt the same triangular shape and orientation of Agn units in the underlying AgOx layer. Bi-layer clusters preferentially form upon increasing the Pd coverage to ∼0.30 ML (monolayer) and continue to develop until aggregating and forming a nearly conformal Pd bi-layer at a coverage near 2 ML. Analysis of the STM images provides quantitative evidence of a transition from single to bi-layer Pd growth on the AgOx layer, and a continuation of bi-layer growth with increasing Pd coverage from ∼0.3 to 2 ML. XPS further demonstrates that the AgOx layer efficiently transfers oxygen to Pd at 300 K, and that the fraction of Pd that oxidizes is approximately equal to the local oxygen coverage in the AgOx layer for Pd coverages up to at least ∼0.7 ML. Our results show that oxygen in the initial AgOx layer mediates the growth and structural properties of Pd on the AgOx/Ag(111) surface, enabling the preparation of model PdAg surfaces with uniformly distributed single or bi-layer Pd clusters. Facile auto-oxidation of Pd by AgOx further suggests that oxygen transfer from Ag to Pd could play a role in promoting oxidation chemistry of adsorbed molecules on PdAg surfaces.

3.
Chem Sci ; 11(25): 6492-6499, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34094115

RESUMEN

The potential for tuning the electronic structure of materials to control reactivity and selectivity in heterogenous catalysis has driven interest in ultrathin metal films which may differ from their bulk form. Herein, a 1-atomic layer Ag film on Pd(111) (Ag/Pd(111)) is demonstrated to have dramatically different reactivity towards formic acid compared to bulk Ag. Formic acid decomposition is of interest as a source of H2 for fuel cell applications and modification of Pd by Ag reduces poisoning by CO and increases the selectivity for H2 formation. Formic acid reacts below room temperature on the 1-atomic layer Ag film, whereas no reaction occurs on pristine bulk Ag. Notably, 2 monolayer films of Ag again become unreactive towards formic acid, indicating a reversion to bulk behavior. A combination of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) was used to establish that the Ag monolayer is continuous and electronically modified compared to bulk Ag. The work establishes a demonstration of the altered electronic structure of Ag monolayers on Pd(111) and an associated change in reactivity. The effect on reactivity only persists for the first layer, demonstrating the need for precise control of materials to exploit the modification in electronic properties.

4.
Nat Commun ; 11(1): 1844, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296065

RESUMEN

Heterogeneous catalysts are complex materials with multiple interfaces. A critical proposition in exploiting bifunctionality in alloy catalysts is to achieve surface migration across interfaces separating functionally dissimilar regions. Herein, we demonstrate the enhancement of more than 104 in the rate of molecular hydrogen reduction of a silver surface oxide in the presence of palladium oxide compared to pure silver oxide resulting from the transfer of atomic hydrogen from palladium oxide islands onto the surrounding surface formed from oxidation of a palladium-silver alloy. The palladium-silver interface also dynamically restructures during reduction, resulting in silver-palladium intermixing. This study clearly demonstrates the migration of reaction intermediates and catalyst material across surface interfacial boundaries in alloys with a significant effect on surface reactivity, having broad implications for the catalytic function of bimetallic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA