Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 314: 114994, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35452885

RESUMEN

Evidence-informed decision-making is in increasing demand given growing pressures on marine environments. A way to facilitate this is by knowledge exchange among marine scientists and decision-makers. While many barriers are reported in the literature, there are also examples whereby research has successfully informed marine decision-making (i.e., 'bright-spots'). Here, we identify and analyze 25 bright-spots from a wide range of marine fields, contexts, and locations to provide insights into how to improve knowledge exchange at the interface of marine science and policy. Through qualitative surveys we investigate what initiated the bright-spots, their goals, and approaches to knowledge exchange. We also seek to identify what outcomes/impacts have been achieved, the enablers of success, and what lessons can be learnt to guide future knowledge exchange efforts. Results show that a diversity of approaches were used for knowledge exchange, from consultative engagement to genuine knowledge co-production. We show that diverse successes at the interface of marine science and policy are achievable and include impacts on policy, people, and governance. Such successes were enabled by factors related to the actors, processes, support, context, and timing. For example, the importance of involving diverse actors and managing positive relationships is a key lesson for success. However, enabling routine success will require: 1) transforming the ways in which we train scientists to include a greater focus on interpersonal skills, 2) institutionalizing and supporting knowledge exchange activities in organizational agendas, 3) conceptualizing and implementing broader research impact metrics, and 4) transforming funding mechanisms to focus on need-based interventions, impact planning, and an acknowledgement of the required time and effort that underpin knowledge exchange activities.


Asunto(s)
Toma de Decisiones , Conocimiento , Política de Salud , Humanos , Aprendizaje , Organizaciones , Políticas
2.
Mar Pollut Bull ; 168: 112430, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34000709

RESUMEN

Nitrogen cycling in coral reefs may be affected by nutrient availability, but knowledge about concentration-dependent thresholds that modulate dinitrogen fixation and denitrification is missing. We determined the effects of different nitrate concentrations (ambient, 1, 5, 10 µM nitrate addition) on both processes under two light scenarios (i.e., light and dark) using a combined acetylene assay for two common benthic reef substrates, i.e., turf algae and coral rubble. For both substrates, dinitrogen fixation rates peaked at 5 µM nitrate addition in light, whereas denitrification was highest at 10 µM nitrate addition in the dark. At 10 µm nitrate addition in the dark, a near-complete collapse of dinitrogen fixation concurrent with a 76-fold increase in denitrification observed for coral rubble, suggesting potential threshold responses linked to the nutritional state of the community. We conclude that dynamic nitrogen cycling activity may help stabilise nitrogen availability in microbial communities associated with coral reef substrates.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Desnitrificación , Nitratos , Fijación del Nitrógeno
3.
Sci Rep ; 11(1): 11820, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083565

RESUMEN

Coral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for > 98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for > 90% of overall N2 fixation, whereas corals contributed to more than half of reef denitrification. Total N2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Desnitrificación , Fijación del Nitrógeno , Animales , Ecosistema , Océano Índico , Nitrógeno/metabolismo
4.
Mar Pollut Bull ; 168: 112444, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984578

RESUMEN

Ecosystem services provided by coral reefs may be susceptible to the combined effects of benthic species shifts and anthropogenic nutrient pollution, but related field studies are scarce. We thus investigated in situ how dissolved inorganic nutrient enrichment, maintained for two months, affected community-wide biogeochemical functions of intact coral- and degraded algae-dominated reef patches in the central Red Sea. Results from benthic chamber incubations revealed 87% increased gross productivity and a shift from net calcification to dissolution in algae-dominated communities after nutrient enrichment, but the same processes were unaffected by nutrients in neighboring coral communities. Both community types changed from net dissolved organic nitrogen sinks to sources, but the increase in net release was 56% higher in algae-dominated communities. Nutrient pollution may, thus, amplify the effects of community shifts on key ecosystem services of coral reefs, possibly leading to a loss of structurally complex habitats with carbonate dissolution and altered nutrient recycling.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Océano Índico , Nutrientes , Solubilidad
5.
PeerJ ; 8: e8737, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274261

RESUMEN

While various sources increasingly release nutrients to the Red Sea, knowledge about their effects on benthic coral reef communities is scarce. Here, we provide the first comparative assessment of the response of all major benthic groups (hard and soft corals, turf algae and reef sands-together accounting for 80% of the benthic reef community) to in-situ eutrophication in a central Red Sea coral reef. For 8 weeks, dissolved inorganic nitrogen (DIN) concentrations were experimentally increased 3-fold above environmental background concentrations around natural benthic reef communities using a slow release fertilizer with 15% total nitrogen (N) content. We investigated which major functional groups took up the available N, and how this changed organic carbon (Corg) and N contents using elemental and stable isotope measurements. Findings revealed that hard corals (in their tissue), soft corals and turf algae incorporated fertilizer N as indicated by significant increases in δ15N by 8%, 27% and 28%, respectively. Among the investigated groups, Corg content significantly increased in sediments (+24%) and in turf algae (+33%). Altogether, this suggests that among the benthic organisms only turf algae were limited by N availability and thus benefited most from N addition. Thereby, based on higher Corg content, turf algae potentially gained competitive advantage over, for example, hard corals. Local management should, thus, particularly address DIN eutrophication by coastal development and consider the role of turf algae as potential bioindicator for eutrophication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA