RESUMEN
Anion exchanger 1 (AE1) mediates Cl-/HCO3- exchange in erythrocytes and kidney intercalated cells where it functions to maintain normal bodily acid-base homeostasis. AE1's C-terminal tail (AE1C) contains multiple potential membrane targeting/retention determinants, including a predicted PDZ binding motif, which are critical for its normal membrane residency. Here we identify PDLIM5 as a direct binding partner for AE1 in human kidney, via PDLIM5's PDZ domain and the PDZ binding motif in AE1C. Kidney AE1 (kAE1), PDLIM5 and integrin-linked kinase (ILK) form a multiprotein complex in which PDLIM5 provides a bridge between ILK and AE1C. Depletion of PDLIM5 resulted in significant reduction in kAE1 at the cell membrane, whereas over-expression of kAE1 was accompanied by increased PDLIM5 levels, underscoring the functional importance of PDLIM5 for proper kAE1 membrane residency, as a crucial linker between kAE1 and actin cytoskeleton-associated proteins in polarized cells.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Riñón/metabolismo , Proteínas con Dominio LIM/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Polaridad Celular , Cloruros/metabolismo , Células HEK293 , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , ARN Interferente Pequeño/genética , Bicarbonato de Sodio/metabolismoRESUMEN
BACKGROUND AND OBJECTIVES: In a single-center renal clinic, we have established routine mutation testing to diagnose UMOD-associated kidney disease (UAKD), an autosomal dominant disorder typically characterized by gout, hyperuricemia, and renal failure in the third to sixth decades. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Four probands and their multigeneration kindreds were assessed by clinical, historical, and biochemical means. Diagnostic UMOD sequencing was performed, and mutant uromodulin was characterized in vitro. RESULTS: All available affected members of the four kindreds harbored the same complex indel change in UMOD, which was associated with almost complete absence of gout and a later onset of CKD; the youngest age at ESRD or death was 38 years (range, 38 to 68 years) compared with 3 to 70 years in other reports. Three mutation carriers (all ≤35 years) are currently asymptomatic. The indel sequence (c.278_289del TCTGCCCCGAAGinsCCGCCTCCT; p.V93_G97del/ins AASC) results in the replacement of five amino acids, including one cysteine, by four novel residues, also including a cysteine. Uromodulin staining of the only available patient biopsy suggested disorganized intracellular trafficking with cellular accumulation. Functional characterization of the mutant isoform revealed retarded intracellular trafficking associated with endoplasmic reticulum (ER) retention and reduced secretion into cell culture media, but to a lesser extent than we observed with the previously reported C150S mutation. CONCLUSIONS: The indel mutation is associated with a relatively mild clinical UAKD phenotype, consistent with our in vitro analysis. UAKD should be routinely considered as a causative gene for ESRD of unknown cause, especially where there is an associated family history or where biopsy reveals interstitial fibrosis.