Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 37(42): 10185-10199, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28931570

RESUMEN

Mitochondrial dysfunction has been implicated in the pathophysiology of neurodegenerative disorders, including multiple sclerosis (MS). To date, the investigation of mitochondrial dysfunction in MS has focused exclusively on neurons, with no studies exploring whether dysregulation of mitochondrial bioenergetics and/or genetics in oligodendrocytes might be associated with the etiopathogenesis of MS and other demyelinating syndromes. To address this question, we established a mouse model where mitochondrial DNA (mtDNA) double-strand breaks (DSBs) were specifically induced in myelinating oligodendrocytes (PLP:mtPstI mice) by expressing a mitochondrial-targeted endonuclease, mtPstI, starting at 3 weeks of age. In both female and male mice, DSBs of oligodendroglial mtDNA caused impairment of locomotor function, chronic demyelination, glial activation, and axonal degeneration, which became more severe with time of induction. In addition, after short transient induction of mtDNA DSBs, PLP:mtPstI mice showed an exacerbated response to experimental autoimmune encephalomyelitis. Together, our data demonstrate that mtDNA damage can cause primary oligodendropathy, which in turn triggers demyelination, proving PLP:mtPstI mice to be a useful tool to study the pathological consequences of mitochondrial dysfunction in oligodendrocytes. In addition, the demyelination and axonal loss displayed by PLP:mtPstI mice recapitulate some of the key features of chronic demyelinating syndromes, including progressive MS forms, which are not accurately reproduced in the models currently available. For this reason, the PLP:mtPstI mouse represents a unique and much needed platform for testing remyelinating therapies.SIGNIFICANCE STATEMENT In this study, we show that oligodendrocyte-specific mitochondrial DNA double-strand breaks in PLP:mtPstI mice cause oligodendrocyte death and demyelination associated with axonal damage and glial activation. Hence, PLP:mtPstI mice represent a unique tool to study the pathological consequences of mitochondrial dysfunction in oligodendrocytes, as well as an ideal platform to test remyelinating and neuroprotective agents.


Asunto(s)
Axones/patología , Roturas del ADN de Doble Cadena , ADN Mitocondrial/genética , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Oligodendroglía/patología , Animales , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/genética , Inflamación/patología , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología
2.
J Neurosci ; 36(18): 5128-43, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147664

RESUMEN

UNLABELLED: Tumor necrosis factor (TNF) is associated with the pathophysiology of various neurological disorders, including multiple sclerosis. It exists as a transmembrane form tmTNF, signaling via TNF receptor 2 (TNFR2) and TNFR1, and a soluble form, solTNF, signaling via TNFR1. Multiple sclerosis is associated with the detrimental effects of solTNF acting through TNFR1, while tmTNF promotes repair and remyelination. Here we demonstrate that oligodendroglial TNFR2 is a key mediator of tmTNF-dependent protection in experimental autoimmune encephalomyelitis (EAE). CNP-cre:TNFR2(fl/fl) mice with TNFR2 ablation in oligodendrocytes show exacerbation of the disease with increased axon and myelin pathology, reduced remyelination, and increased loss of oligodendrocyte precursor cells and mature oligodendrocytes. The clinical course of EAE is not improved by the solTNF inhibitor XPro1595 in CNP-cre:TNFR2(fl/fl) mice, indicating that for tmTNF to promote recovery TNFR2 in oligodendrocytes is required. We show that TNFR2 drives differentiation of oligodendrocyte precursor cells, but not proliferation or survival. TNFR2 ablation leads to dysregulated expression of microRNAs, among which are regulators of oligodendrocyte differentiation and inflammation, including miR-7a. Our data provide the first direct in vivo evidence that TNFR2 in oligodendrocytes is important for oligodendrocyte differentiation, thereby sustaining tmTNF-dependent repair in neuroimmune disease. Our studies identify TNFR2 in the CNS as a molecular target for the development of remyelinating agents, addressing the most pressing need in multiple sclerosis therapy nowadays. SIGNIFICANCE STATEMENT: Our study, using novel TNF receptor 2 (TNFR2) conditional KO mice with selective TNFR2 ablation in oligodendrocytes, provides the first direct evidence that TNFR2 is an important signal for oligodendrocyte differentiation. Following activation by transmembrane TNF, TNFR2 initiates pathways that drive oligodendrocytes into a reparative mode contributing to remyelination following disease. This identifies TNFR2 as a new molecular target for the development of therapeutic agents in multiple sclerosis.


Asunto(s)
Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina , Neuroglía/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Animales , Axones/patología , Conducta Animal , Supervivencia Celular/genética , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Noqueados , Regeneración Nerviosa/genética , Células-Madre Neurales , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Neurochem ; 136 Suppl 1: 63-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26364732

RESUMEN

Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.


Asunto(s)
Axones/patología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Condicionamiento Físico Animal/fisiología , Natación/fisiología , Animales , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Autoinmunes Desmielinizantes SNC/prevención & control , Femenino , Ratones , Ratones Endogámicos C57BL , Condicionamiento Físico Animal/métodos , Resultado del Tratamiento
4.
J Immunol ; 190(9): 4525-34, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23530149

RESUMEN

A mutation in the IL7Rα locus has been identified as a risk factor for multiple sclerosis (MS), a neurodegenerative autoimmune disease characterized by inflammation, demyelination, and axonal damage. IL7Rα has well documented roles in lymphocyte development and homeostasis, but its involvement in disease is largely understudied. In this study, we use the experimental autoimmune encephalomyelitis (EAE) model of MS to show that a less severe form of the disease results when IL7Rα expression is largely restricted to thymic tissue in IL7RTg(IL7R-/-) mice. Compared with wild-type (WT) mice, IL7RTg(IL7R-/-) mice exhibited reduced paralysis and myelin damage that correlated with dampened effector responses, namely decreased TNF production. Furthermore, treatment of diseased WT mice with neutralizing anti-IL7Rα Ab also resulted in significant improvement of EAE. In addition, chimeric mice were generated by bone marrow transplant to limit expression of IL7Rα to cells of either hematopoietic or nonhematopoietic origin. Mice lacking IL7Rα only on hematopoietic cells develop severe EAE, suggesting that IL7Rα expression in the nonhematopoietic compartment contributes to disease. Moreover, novel IL7Rα expression was identified on astrocytes and oligodendrocytes endogenous to the CNS. Chimeric mice that lack IL7Rα only on nonhematopoietic cells also develop severe EAE, which further supports the role of IL7Rα in T cell effector function. Conversely, mice that lack IL7Rα throughout both compartments are dramatically protected from disease. Taken together, these data indicate that multiple cell types use IL7Rα signaling in the development of EAE, and inhibition of this pathway should be considered as a new therapeutic avenue for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Activación de Linfocitos/inmunología , Receptores de Interleucina-7/inmunología , Linfocitos T/inmunología , Animales , Astrocitos/inmunología , Trasplante de Médula Ósea/inmunología , Linaje de la Célula , Sistema Nervioso Central/inmunología , Citocinas/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Mutación/inmunología , Vaina de Mielina/inmunología , Oligodendroglía/inmunología , Timo/inmunología , Factor de Necrosis Tumoral alfa/inmunología
5.
Glia ; 62(3): 452-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24357067

RESUMEN

Astrocytes respond to insult with a process of cellular activation known as reactive astrogliosis. One of the key signals regulating this phenomenon is the transcription factor nuclear factor-kappa B (NF-κB), which is responsible for modulating inflammation, cell survival, and cell death. In astrocytes, following trauma or disease, the expression of NF-κB-dependent genes is highly activated. We previously demonstrated that inactivation of astroglial NF-κB in vivo (GFAP-IκBα-dn mice) leads to improved functional outcome in experimental autoimmune encephalomyelitis (EAE), and this is accompanied by reduction of pro-inflammatory gene expression in the CNS. Here we extend our studies to show that recovery from EAE in GFAP-IκBα-dn mice is associated with reduction of peripheral immune cell infiltration into the CNS at the chronic phase of EAE. This is not dependent on a less permeable blood-brain barrier, but rather on a reduced immune cell mobilization from the periphery. Furthermore, once inside the CNS, the ability of T cells to produce pro-inflammatory cytokines is diminished during acute disease. In parallel, we found that the number of total and activated microglial cells is reduced, suggesting that functional improvement in GFAP-IκBα-dn mice is dependent upon reduction of the overall inflammatory response within the CNS sustained by both resident and infiltrating cells. This results in preservation of myelin compaction and enhanced remyelination, as shown by electron microscopy analysis of the spinal cord. Collectively our data indicate that astrocytes are key players in driving CNS inflammation and are directly implicated in the pathophysiology of EAE, since blocking their pro-inflammatory capability results in protection from the disease.


Asunto(s)
Astrocitos/fisiología , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Regulación de la Expresión Génica/inmunología , Inflamación/etiología , Inflamación/patología , Animales , Astrocitos/ultraestructura , Sistema Nervioso Central/inmunología , Claudina-5/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas I-kappa B/genética , Inmunoglobulina G/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica , Vaina de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Inhibidor NF-kappaB alfa , Fragmentos de Péptidos/toxicidad , Médula Espinal , Linfocitos T/metabolismo
6.
J Neuroinflammation ; 10: 92, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23880092

RESUMEN

BACKGROUND: Astrocytes are taking the center stage in neurotrauma and neurological diseases as they appear to play a dominant role in the inflammatory processes associated with these conditions. Previously, we reported that inhibiting NF-κB activation in astrocytes, using a transgenic mouse model (GFAP-IκBα-dn mice), results in improved functional recovery, increased white matter preservation and axonal sparing following spinal cord injury (SCI). In the present study, we sought to determine whether this improvement, due to inhibiting NF-κB activation in astrocytes, could be the result of enhanced oligodendrogenesis in our transgenic mice. METHODS: To assess oligodendrogenesis in GFAP-IκBα-dn compared to wild-type (WT) littermate mice following SCI, we used bromodeoxyuridine labeling along with cell-specific immuno-histochemistry, confocal microscopy and quantitative cell counts. To further gain insight into the underlying molecular mechanisms leading to increased white matter, we performed a microarray analysis in naïve and 3 days, 3 and 6 weeks following SCI in GFAP-IκBα-dn and WT littermate mice. RESULTS: Inhibition of astroglial NF-κB in GFAP-IκBα-dn mice resulted in enhanced oligodendrogenesis 6 weeks following SCI and was associated with increased levels of myelin proteolipid protein compared to spinal cord injured WT mice. The microarray data showed a large number of differentially expressed genes involved in inflammatory and immune response between WT and transgenic mice. We did not find any difference in the number of microglia/leukocytes infiltrating the spinal cord but did find differences in their level of expression of toll-like receptor 4. We also found increased expression of the chemokine receptor CXCR4 on oligodendrocyte progenitor cells and mature oligodendrocytes in the transgenic mice. Finally TNF receptor 2 levels were significantly higher in the transgenic mice compared to WT following injury. CONCLUSIONS: These studies suggest that one of the beneficial roles of blocking NF-κB in astrocytes is to promote oligodendrogenesis through alteration of the inflammatory environment.


Asunto(s)
Astrocitos/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/fisiología , Neurogénesis/fisiología , Oligodendroglía/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Astrocitos/patología , Femenino , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Transgénicos , Oligodendroglía/patología , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba/fisiología
7.
Stem Cells ; 30(3): 510-24, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22134901

RESUMEN

Inflammatory mediators, many of which activate the signaling of nuclear factor kappa B (NFκB), have received increasing attention in the field of neurogenesis. NFκB signaling regulates neurite outgrowth and neural plasticity as well as the proliferation/apoptosis and terminal differentiation of neural stem cells (NSCs). Early neurogenesis from NSCs produces identical progeny through symmetric division and committed daughter cells through asymmetric division. Here, we show that NFκB signaling is required for NSC initial differentiation. The canonical IKKß/IκBα/p65 pathway is activated during the initial stages of neural differentiation induced by treatment with TNFα or withdrawal of epidermal growth factor/basic fibroblast growth factor. NSC-specific inhibition of NFκB in transgenic mice causes an accumulation of Nestin(+) /Sox2(+) /glial fibrillary acidic protein(+) NSCs. Inhibition of NFκB signaling in vitro blocks differentiation and asymmetric division and maintains NSCs in an undifferentiated state. The induction of initial differentiation and asymmetry by NFκB signaling occurs through the inhibition of C/EBPß expression. Our data reveal a novel function of NFκB signaling in early neurogenesis and provide insight into the molecular mechanisms underlying neurodevelopmental disorders and neurodegenerative diseases.


Asunto(s)
Diferenciación Celular , FN-kappa B/metabolismo , Células-Madre Neurales/fisiología , Transducción de Señal , Animales , División Celular Asimétrica , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Ventrículos Laterales/citología , Masculino , Ratones , Ratones Transgénicos , Regeneración Nerviosa , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Factores de Transcripción SOXB1/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
Brain ; 134(Pt 9): 2736-54, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21908877

RESUMEN

Tumour necrosis factor is linked to the pathophysiology of various neurodegenerative disorders including multiple sclerosis. Tumour necrosis factor exists in two biologically active forms, soluble and transmembrane. Here we show that selective inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis. Treatment with XPro1595, a selective soluble tumour necrosis factor blocker, improves the clinical outcome, whereas non-selective inhibition of both forms of tumour necrosis factor with etanercept does not result in protection. The therapeutic effect of XPro1595 is associated with axon preservation and improved myelin compaction, paralleled by increased expression of axon-specific molecules (e.g. neurofilament-H) and reduced expression of non-phosphorylated neurofilament-H which is associated with axon damage. XPro1595-treated mice show significant remyelination accompanied by elevated expression of myelin-specific genes and increased numbers of oligodendrocyte precursors. Immunohistochemical characterization of tumour necrosis factor receptors in the spinal cord following experimental autoimmune encephalomyelitis shows tumour necrosis factor receptor 1 expression in neurons, oligodendrocytes and astrocytes, while tumour necrosis factor receptor 2 is localized in oligodendrocytes, oligodendrocyte precursors, astrocytes and macrophages/microglia. Importantly, a similar pattern of expression is found in post-mortem spinal cord of patients affected by progressive multiple sclerosis, suggesting that pharmacological modulation of tumour necrosis factor receptor signalling may represent an important target in affecting not only the course of mouse experimental autoimmune encephalomyelitis but human multiple sclerosis as well. Collectively, our data demonstrate that selective inhibition of soluble tumour necrosis factor improves recovery following experimental autoimmune encephalomyelitis, and that signalling mediated by transmembrane tumour necrosis factor is essential for axon and myelin preservation as well as remyelination, opening the possibility of a new avenue of treatment for multiple sclerosis.


Asunto(s)
Axones/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Factores de Necrosis Tumoral/metabolismo , Animales , Axones/patología , Quimiocinas/inmunología , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Glicoproteínas/inmunología , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/patología , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos/inmunología , Receptores del Factor de Necrosis Tumoral/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología , Inhibidores del Factor de Necrosis Tumoral
9.
J Exp Med ; 202(1): 145-56, 2005 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-15998793

RESUMEN

In the central nervous system (CNS), the transcription factor nuclear factor (NF)-kappaB is a key regulator of inflammation and secondary injury processes. After trauma or disease, the expression of NF-kappaB-dependent genes is highly activated, leading to both protective and detrimental effects on CNS recovery. We demonstrate that selective inactivation of astroglial NF-kappaB in transgenic mice expressing a dominant negative (dn) form of the inhibitor of kappaB alpha under the control of an astrocyte-specific promoter (glial fibrillary acidic protein [GFAP]-dn mice) leads to a dramatic improvement in functional recovery 8 wk after contusive spinal cord injury (SCI). Histologically, GFAP mice exhibit reduced lesion volume and substantially increased white matter preservation. In parallel, they show reduced expression of proinflammatory chemokines and cytokines, such as CXCL10, CCL2, and transforming growth factor-beta2, and of chondroitin sulfate proteoglycans participating in the formation of the glial scar. We conclude that selective inhibition of NF-kappaB signaling in astrocytes results in protective effects after SCI and propose the NF-kappaB pathway as a possible new target for the development of therapeutic strategies for the treatment of SCI.


Asunto(s)
Astrocitos/metabolismo , Inflamación/prevención & control , FN-kappa B/antagonistas & inhibidores , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Animales , Secuencia de Bases , Quimiocinas/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Citocinas/metabolismo , ADN Complementario/genética , Femenino , Proteína Ácida Fibrilar de la Glía/deficiencia , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Transducción de Señal , Traumatismos de la Médula Espinal/patología
10.
J Immunol ; 182(5): 2628-40, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19234157

RESUMEN

In the CNS, the transcription factor NF-kappaB is a key regulator of inflammation and secondary injury processes. Following trauma or disease, the expression of NF-kappaB-dependent genes is activated, leading to both protective and detrimental effects. In this study, we show that transgenic inactivation of astroglial NF-kappaB (glial fibrillary acidic protein-IkappaB alpha-dominant-negative mice) resulted in reduced disease severity and improved functional recovery following experimental autoimmune encephalomyelitis. At the chronic stage of the disease, transgenic mice exhibited an overall higher presence of leukocytes in spinal cord and brain, and a markedly higher percentage of CD8(+)CD122(+) T regulatory cells compared with wild type, which correlated with the timing of clinical recovery. We also observed that expression of proinflammatory genes in both spinal cord and cerebellum was delayed and reduced, whereas the loss of neuronal-specific molecules essential for synaptic transmission was limited compared with wild-type mice. Furthermore, death of retinal ganglion cells in affected retinas was almost abolished, suggesting the activation of neuroprotective mechanisms. Our data indicate that inhibiting NF-kappaB in astrocytes results in neuroprotective effects following experimental autoimmune encephalomyelitis, directly implicating astrocytes in the pathophysiology of this disease.


Asunto(s)
Astrocitos/inmunología , Astrocitos/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Mediadores de Inflamación/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedad Crónica , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Perfilación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/deficiencia , Proteína Ácida Fibrilar de la Glía/genética , Proteínas I-kappa B/deficiencia , Proteínas I-kappa B/genética , Mediadores de Inflamación/fisiología , Masculino , Ratones , Ratones Transgénicos , Inhibidor NF-kappaB alfa , FN-kappa B/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Índice de Severidad de la Enfermedad
11.
Glia ; 44(1): 13-25, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12951653

RESUMEN

High-affinity excitatory amino acid transporters (EAATs) are essential to terminate glutamatergic neurotransmission and to prevent excitotoxicity. To date, five distinct EAATs have been cloned from animal and human tissues: GLAST (EAAT1), GLT-1 (EAAT2), EAAC1 (EAAT3), EAAT4, and EAAT5. EAAT1 and EAAT2 are commonly known as glial glutamate transporters, whereas EAAT3, EAAT4, and EAAT5 are neuronal. EAAT4 is largely expressed in cerebellar Purkinje cells. In this study, using immunohistochemistry and Western blotting, we found that EAAT4-like immunoreactivity (ir) is enriched in the spinal cord and forebrain. Double-labeled fluorescent immunostaining and confocal image analysis indicated that EAAT4-like ir colocalizes with an astrocytic marker, glial fibrillary acidic protein (GFAP). The astrocytic localization of EAAT4 was further confirmed in astrocyte cultures by double-labeled fluorescent immunocytochemistry and Western blotting. Reverse transcriptase-polymerase chain reaction analysis demonstrated mRNA expression of EAAT4 in astrocyte cultures. Sequencing confirmed the specificity of the amplified fragment. These results demonstrate that EAAT4 is expressed in astrocytes. This astrocytic localization of neuronal EAAT4 may reveal a new function of EAAT4 in the central nervous system.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Receptores de Glutamato/metabolismo , Médula Espinal/metabolismo , Simportadores , Animales , Animales Recién Nacidos , Especificidad de Anticuerpos , Astrocitos/citología , Células Cultivadas , Transportador 1 de Aminoácidos Excitadores , Transportador 2 de Aminoácidos Excitadores , Transportador 3 de Aminoácidos Excitadores , Transportador 4 de Aminoácidos Excitadores , Transportador 5 de Aminoácidos Excitadores , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática , Ratones , Neuronas/citología , Prosencéfalo/citología , ARN Mensajero/metabolismo , Receptores de Glutamato/genética , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA