Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 591(7848): 157-161, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597751

RESUMEN

Citrate is best known as an intermediate in the tricarboxylic acid cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis1-3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic concentration of citrate4,5. Liver cells import citrate through the sodium-dependent citrate transporter NaCT (encoded by SLC13A5) and, as a consequence, this protein is a potential target for anti-obesity drugs. Here, to understand the structural basis of its inhibition mechanism, we determined cryo-electron microscopy structures of human NaCT in complexes with citrate or a small-molecule inhibitor. These structures reveal how the inhibitor-which binds to the same site as citrate-arrests the transport cycle of NaCT. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish the transport activity of NaCT in the brain and thereby cause epilepsy associated with mutations in SLC13A5 in newborns (which is known as SLC13A5-epilepsy)6-8.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Ácido Cítrico/metabolismo , Microscopía por Crioelectrón , Malatos/farmacología , Fenilbutiratos/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/química , Sitios de Unión , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Ácido Cítrico/química , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Malatos/química , Modelos Moleculares , Mutación , Fenilbutiratos/química , Multimerización de Proteína , Sodio/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética , Simportadores/genética , Simportadores/ultraestructura
2.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098070

RESUMEN

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Asunto(s)
Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Ligandos , Linfocitos T CD8-positivos , Unión Proteica
3.
Bioorg Med Chem Lett ; 96: 129492, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778428

RESUMEN

Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation. Herein we describe the discovery and optimization of small molecule PPI (protein-protein interaction) inhibitors of NKG2D/NKG2DL. Rapid SAR was guided by structure-based drug design and accomplished by iterative singleton and parallel medicinal chemistry synthesis. These efforts resulted in the identification of several potent analogs (14, 21, 30, 45) with functional activity and improved LLE.


Asunto(s)
Proteínas Portadoras , Subfamilia K de Receptores Similares a Lectina de Células NK , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteínas Portadoras/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Unión Proteica , Células Asesinas Naturales/metabolismo , Ligandos
4.
Proc Natl Acad Sci U S A ; 110(7): 2534-9, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23359690

RESUMEN

Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Conformación Proteica , Streptococcus thermophilus , Thermotoga maritima , Secuencia de Aminoácidos , Transporte Biológico Activo/fisiología , Cristalografía , Dimerización , Humanos , Datos de Secuencia Molecular , Vitaminas/metabolismo
5.
Biophys J ; 109(7): 1420-8, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445442

RESUMEN

Ex vivo stability is a valuable protein characteristic but is laborious to improve experimentally. In addition to biopharmaceutical and industrial applications, stable protein is important for biochemical and structural studies. Taking advantage of the large number of available genomic sequences and growth temperature data, we present two bioinformatic methods to identify a limited set of amino acids or positions that likely underlie thermostability. Because these methods allow thousands of homologs to be examined in silico, they have the advantage of providing both speed and statistical power. Using these methods, we introduced, via mutation, amino acids from thermoadapted homologs into an exemplar mesophilic membrane protein, and demonstrated significantly increased thermostability while preserving protein activity.


Asunto(s)
Biología Computacional/métodos , Mutación , Estabilidad Proteica , Temperatura , Aminoácidos/química , Aminoácidos/genética , Antibacterianos/farmacología , Antiportadores/química , Antiportadores/genética , Bacillus subtilis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Tetraciclina/farmacología , Transfección
6.
Mol Cell Proteomics ; 10(10): M111.007930, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21719796

RESUMEN

Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially contributing to the difficulties encountered in IMP crystallization.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/crecimiento & desarrollo , Proteínas de la Membrana/biosíntesis , Análisis por Matrices de Proteínas/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética
7.
Methods ; 55(4): 324-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21840396

RESUMEN

Biochemical and biophysical analysis on integral membrane proteins often requires monodisperse and stable protein samples. Here we describe a method to characterize protein thermostability by measuring its melting temperature in detergent using analytical size-exclusion chromatography. This quantitative method can be used to screen for compounds and conditions that stabilize the protein. With this technique we were able to assess and improve the thermostability of several membrane proteins. These conditions were in turn used to assist purification, to identify protein ligand and to improve crystal quality.


Asunto(s)
Proteínas de Transporte de Anión/química , Fosfatidato Fosfatasa/química , Proteínas de Transporte de Anión/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Glucósidos/química , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Fosfatidato Fosfatasa/aislamiento & purificación , Estabilidad Proteica , Solubilidad , Temperatura de Transición
9.
J Mol Biol ; 428(15): 3118-30, 2016 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-27312125

RESUMEN

ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.


Asunto(s)
Sitios de Unión/fisiología , Proteínas de Transporte de Membrana/metabolismo , Subunidades de Proteína/metabolismo , Riboflavina/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X/métodos , Modelos Moleculares , Conformación Proteica , Thermotoga maritima/metabolismo , Vitaminas/metabolismo
10.
Nat Struct Mol Biol ; 22(7): 565-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26052893

RESUMEN

ECF transporters are a family of active transporters for vitamins. They are composed of four subunits: a membrane-embedded substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT) and two ATP-binding-cassette ATPases (EcfA and EcfA'). We have investigated the mechanism of the ECF transporter for riboflavin from the pathogen Listeria monocytogenes, LmECF-RibU. Using structural and biochemical approaches, we found that ATP binding to the EcfAA' ATPases drives a conformational change that dissociates the S subunit from the EcfAA'T ECF module. Upon release from the ECF module, the RibU S subunit then binds the riboflavin transport substrate. We also find that S subunits for distinct substrates compete for the ATP-bound state of the ECF module. Our results explain how ECF transporters capture the transport substrate and reproduce the in vivo observations on S-subunit competition for which the family was named.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Riboflavina/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Humanos , Listeria monocytogenes/química , Listeriosis/microbiología , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
11.
Curr Opin Struct Biol ; 20(4): 415-22, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20739005

RESUMEN

LeuT is a member of the neurotransmitter/sodium symporter family, which includes the neuronal transporters for serotonin, norepinephrine, and dopamine. The original crystal structure of LeuT shows a primary leucine-binding site at the center of the protein. LeuT is inhibited by different classes of antidepressants that act as potent inhibitors of the serotonin transporter. The newly determined crystal structures of LeuT-antidepressant complexes provide opportunities to probe drug binding in the serotonin transporter, of which the exact position remains controversial. Structure of a LeuT-tryptophan complex shows an overlapping binding site with the primary substrate site. A secondary substrate binding site was recently identified, where the binding of a leucine triggers the cytoplasmic release of the primary substrate. This two binding site model presents opportunities for a better understanding of drug binding and the mechanism of inhibition for mammalian transporters.


Asunto(s)
Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Leucina/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Sitios de Unión , Humanos , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Especificidad por Sustrato
12.
Nat Struct Mol Biol ; 16(6): 652-7, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19430461

RESUMEN

Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Sertralina/farmacología , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antidepresivos Tricíclicos/farmacología , Sitios de Unión , Línea Celular , Cristalografía por Rayos X/métodos , Dopamina/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Modelos Químicos , Mutación , Norepinefrina/metabolismo , Unión Proteica , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
13.
Science ; 317(5843): 1390-3, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17690258

RESUMEN

Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.


Asunto(s)
Antidepresivos Tricíclicos/metabolismo , Proteínas Bacterianas/metabolismo , Desipramina/metabolismo , Inhibidores de la Captación de Neurotransmisores/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Secuencia de Aminoácidos , Animales , Antidepresivos Tricíclicos/química , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Secuencia Conservada , Cristalografía por Rayos X , Desipramina/química , Dopamina/química , Dopamina/metabolismo , Inhibidores de Captación de Dopamina/química , Inhibidores de Captación de Dopamina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Inhibidores de la Captación de Neurotransmisores/química , Norepinefrina/química , Norepinefrina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/química , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Serotonina/química , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo
14.
J Biol Chem ; 278(10): 8429-34, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12468528

RESUMEN

BtuF is the periplasmic binding protein (PBP) for the vitamin B12 transporter BtuCD, a member of the ATP-binding cassette (ABC) transporter superfamily of transmembrane pumps. We have determined crystal structures of Escherichia coli BtuF in the apo state at 3.0 A resolution and with vitamin B12 bound at 2.0 A resolution. The structure of BtuF is similar to that of the FhuD and TroA PBPs and is composed of two alpha/beta domains linked by a rigid alpha-helix. B12 is bound in the "base-on" or vitamin conformation in a wide acidic cleft located between these domains. The C-terminal domain shares structural homology to a B12-binding domain found in a variety of enzymes. The same surface of this domain interacts with opposite surfaces of B12 when comparing ligand-bound structures of BtuF and the homologous enzymes, a change that is probably caused by the obstruction of the face that typically interacts with this domain by the base-on conformation of vitamin B12 bound to BtuF. There is no apparent pseudo-symmetry in the surface properties of the BtuF domains flanking its B12 binding site even though the presumed transport site in the previously reported crystal structure of BtuCD is located in an intersubunit interface with 2-fold symmetry. Unwinding of an alpha-helix in the C-terminal domain of BtuF appears to be part of conformational change involving a general increase in the mobility of this domain in the apo structure compared with the B12-bound structure. As this helix is located on the surface likely to interact with BtuC, unwinding of the helix upon binding to BtuC could play a role in triggering release of B12 into the transport cavity. Furthermore, the high mobility of this domain in free BtuF could provide an entropic driving force for the subsequent release of BtuF required to complete the transport cycle.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Vitamina B 12/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión Periplasmáticas/química , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA