Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 61(11): 5320-5326, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34723516

RESUMEN

We describe a step-by-step protocol for the computation of absolute dissociation free energy with GROMACS code and PLUMED library, which exploits a combination of advanced sampling techniques and nonequilibrium alchemical methodologies. The computational protocol has been automated through an open source Python middleware (HPC_Drug) which allows one to set up the GROMACS/PLUMED input files for execution on high performing computing facilities. The proposed protocol, by exploiting its inherent parallelism and the power of the GROMACS code on graphical processing units, has the potential to afford accurate and precise estimates of the dissociation constants in drug-receptor systems described at the atomistic level. The procedure has been applied to the calculation of the absolute dissociation free energy of PF-07321332, an oral antiviral proposed by Pfizer, with the main protease (3CLpro) of SARS-CoV-2.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Antivirales , Entropía , Lactamas , Leucina , Nitrilos , Prolina , SARS-CoV-2
2.
J Phys Chem B ; 128(7): 1595-1605, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323915

RESUMEN

Alchemical transformations can be used to quantitatively estimate absolute binding free energies at a reasonable computational cost. However, most of the approaches currently in use require knowledge of the correct (crystallographic) pose. In this paper, we present a combined Hamiltonian replica exchange nonequilibrium alchemical method that allows us to reliably calculate absolute binding free energies, even when starting from suboptimal initial binding poses. Performing a preliminary Hamiltonian replica exchange enhances the sampling of slow degrees of freedom of the ligand and the target, allowing the system to populate the correct binding pose when starting from an approximate docking pose. We apply the method on 6 ligands of the first bromodomain of the BRD4 bromodomain-containing protein. For each ligand, we start nonequilibrium alchemical transformations from both the crystallographic pose and the top-scoring docked pose that are often significantly different. We show that the method produces statistically equivalent binding free energies, making it a useful tool for computational drug discovery pipelines.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Nucleares , Unión Proteica , Termodinámica , Ligandos , Factores de Transcripción
3.
J Chem Theory Comput ; 16(11): 7160-7172, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090785

RESUMEN

In the context of drug-receptor binding affinity calculations using molecular dynamics techniques, we implemented a combination of Hamiltonian replica exchange (HREM) and a novel nonequilibrium alchemical methodology, called virtual double-system single-box, with increased accuracy, precision, and efficiency with respect to the standard nonequilibrium approaches. The method has been applied for the determination of absolute binding free energies of 16 newly designed noncovalent ligands of the main protease (3CLpro) of SARS-CoV-2. The core structures of 3CLpro ligands were previously identified using a multimodal structure-based ligand design in combination with docking techniques. The calculated binding free energies for four additional ligands with known activity (either for SARS-CoV or SARS-CoV-2 main protease) are also reported. The nature of binding in the 3CLpro active site and the involved residues besides the CYS-HYS catalytic dyad have been thoroughly characterized by enhanced sampling simulations of the bound state. We have identified several noncongeneric compounds with predicted low micromolar activity for 3CLpro inhibition, which may constitute possible lead compounds for the development of antiviral agents in Covid-19 treatment.


Asunto(s)
Betacoronavirus/enzimología , Cisteína Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , SARS-CoV-2 , Interfaz Usuario-Computador , Proteínas no Estructurales Virales/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA