Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 24(13): 3623-37, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25794683

RESUMEN

The gene mapt codes for the microtubule-associated protein Tau. The R406W amino acid substitution in Tau is associated with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) characterized by Tau-positive filamentous inclusions. These filamentous Tau inclusions are present in a group of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To gain more insights into the pathomechanism of tauopathies, we performed an RNAi-based large-scale screen in Drosophila melanogaster to identify genetic modifiers of Tau[R406W]-induced toxicity. A collection of RNAi lines, putatively silencing more than 7000 genes, was screened for the ability to modify Tau[R406W]-induced toxicity in vivo. This collection covered more than 50% of all protein coding fly genes and more than 90% of all fly genes known to have a human ortholog. Hereby, we identified 62 genes that, when silenced by RNAi, modified Tau-induced toxicity specifically. Among these 62 modifiers were three subunits of the Dynein/Dynactin complex. Analysis on segmental nerves of fly larvae showed that pan neural Tau[R406W] expression and concomitant silencing of Dynein/Dynactin complex members synergistically caused strong pathological changes within the axonal compartment, but only minor changes at synapses. At the larval stage, these alterations did not cause locomotion deficits, but became evident in adult flies. Our data suggest that Tau-induced detrimental effects most likely originate from axonal rather than synaptic dysfunction and that impaired retrograde transport intensifies detrimental effects of Tau in axons. In conclusion, our findings contribute to the elucidation of disease mechanisms in tauopathies like FTDP-17 or AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas de Drosophila/toxicidad , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas tau/toxicidad , Enfermedad de Alzheimer/genética , Animales , Axones/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Complejo Dinactina , Dineínas/genética , Femenino , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Transporte de Proteínas , Interferencia de ARN , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Hum Mol Genet ; 22(14): 2829-41, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525905

RESUMEN

PTEN-induced kinase 1 (PINK1) is a serine/threonine kinase that is localized to mitochondria. It protects cells from oxidative stress by suppressing mitochondrial cytochrome c release, thereby preventing cell death. Mutations in Pink1 cause early-onset Parkinson's disease (PD). Consistently, mitochondrial function is impaired in Pink1-linked PD patients and model systems. Previously, in vitro analysis implied that the protective effects of PINK1 depend on phosphorylation of the downstream factor, TNF receptor-associated protein 1 (TRAP1). Furthermore, TRAP1 has been shown to mitigate α-Synuclein-induced toxicity, linking α-Synuclein directly to mitochondrial dysfunction. These data suggest that TRAP1 seems to mediate protective effects on mitochondrial function in pathways that are affected in PD. Here we investigated the potential of TRAP1 to rescue dysfunction induced by either PINK1 or Parkin deficiency in vivo and in vitro. We show that overexpression of human TRAP1 is able to mitigate Pink1 but not parkin loss-of-function phenotypes in Drosophila. In addition, detrimental effects observed after RNAi-mediated silencing of complex I subunits were rescued by TRAP1 in Drosophila. Moreover, TRAP1 was able to rescue mitochondrial fragmentation and dysfunction upon siRNA-induced silencing of Pink1 but not parkin in human neuronal SH-SY5Y cells. Thus, our data suggest a functional role of TRAP1 in maintaining mitochondrial integrity downstream of PINK1 and complex I deficits but parallel to or upstream of Parkin.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Femenino , Técnicas de Inactivación de Genes , Proteínas HSP90 de Choque Térmico/genética , Humanos , Masculino , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
PLoS Genet ; 8(2): e1002488, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319455

RESUMEN

Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein-induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein-expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein-induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein-induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/genética , Animales , Supervivencia Celular/genética , Dopamina/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Chaperonas Moleculares/genética , Mutación , Estrés Oxidativo , Células PC12 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN Interferente Pequeño , Ratas , Rotenona/farmacología , alfa-Sinucleína/toxicidad
4.
J Neurochem ; 127(4): 453-60, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24028575

RESUMEN

In an aging society, research involving neurodegenerative disorders is of paramount importance. Over the past few years, research on Alzheimer's and Parkinson's diseases has made tremendous progress. Experimental studies, however, rely mostly on transgenic animal models, preferentially using mice. Although experiments on mice have enormous advantages, they also have some inherent limitations, some of which can be overcome by the use of Drosophila melanogaster as an experimental animal. Among the major advantages of using the fly is its small genome, which can also be modified very easily. The fact that its genome lends itself to diverse alterations (e. g. mutagenesis, transposons) has made the fly a useful organism to perform large-scale and genome-wide screening approaches. This has opened up an entirely new field of experimental research aiming to elucidate genetic interactions and screen for modifiers of disease processes in vivo. Here, we provide a brief overview of how flies can be used to analyze molecular mechanisms underlying human neurodegenerative diseases.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila/genética , Genes de Insecto , Enfermedades Neurodegenerativas/genética , Animales , Drosophila/citología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/metabolismo
5.
Cell Signal ; 18(6): 819-29, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16129580

RESUMEN

In the canonical model of JAK/STAT signalling STAT transcription factors are activated by JAK mediated tyrosine phosphorylation following pathway stimulation by external cytokines. Activated STAT molecules then homo- or heterodimerise before translocating to the nucleus where they bind to DNA sequences within the promoters of pathway target genes. DNA-bound STAT dimers then activate transcription of their targets via interaction with components of the basal transcription machinery. Here we describe a missense mutation in the SH2 domain of the single Drosophila STAT92E homologue which results in an amino-acid substitution conserved in both the canonical SH2 domain and STAT-like molecules previously identified in C. elegans and the mosquito Anopheles gambiae. This mutation leads to nuclear accumulation and constitutive DNA binding of Drosophila STAT92E even in the absence of JAK stimulation. Strikingly, this mutant shows only limited transcriptional activity in tissue culture based assays and functions as a dominant-negative at both the phenotypic and molecular levels in vivo. These features represent aspects of both dominant gain-of-function and dominant-negative activities and imply that the functions of DNA binding can be functionally separated from the role of STAT92E as a transcriptional activator. It is thus possible that an alternative post-translational modification, in addition to tyrosine phosphorylation, may be required to allow STAT to act as a transcriptional activator and suggests the existence of an alternative mechanism by which STAT transcriptional activity may be regulated in vivo.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación Missense , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Activación Transcripcional , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células Cultivadas , Análisis Mutacional de ADN , Drosophila , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Alineación de Secuencia , Dominios Homologos src/genética
6.
Mech Dev ; 117(1-2): 343-6, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12204282

RESUMEN

The suppressor of cytokine signalling (SOCS) gene family was originally identified as an immediate early response to cytokine signalling and function as negative regulators of the Janus kinase (JAK)/signal tranducers and activators of transcription (STAT) signal transduction pathway [Krebs and Hilton, J. Cell Sci. 113 (2000) 2813; Starr and Hilton, Int. J. Biochem. Cell Biol. 30 (1998) 1081]. Although key components of the Drosophila JAK/STAT pathway have been identified [Brown et al., Curr. Biol. 11 (2001) 1700, reviewed in Zeidler et al., Oncogene 19 (2000) 2598], regulators of the pathway, and SOCS genes in particular, have not yet been characterised. Here we report the cloning of Drosophila SOCS36E and show its expression pattern during embryonic and imaginal disc development. SOCS36E is expressed in an essentially identical pattern to the Drosophila JAK/STAT pathway ligand unpaired (Upd). It is not expressed in upd mutant embryos and is upregulated in response to ectopic activation of the pathway during both embryonic and imaginal development.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Proteínas Represoras/genética , Factores de Transcripción , Animales , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Glicoproteínas/genética , Mutación , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas , Transactivadores/metabolismo
7.
PLoS One ; 7(11): e47452, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23139745

RESUMEN

Polyglutamine (polyQ) diseases represent a neuropathologically heterogeneous group of disorders. The common theme of these disorders is an elongated polyQ tract in otherwise unrelated proteins. So far, only symptomatic treatment can be applied to patients suffering from polyQ diseases. Despite extensive research, the molecular mechanisms underlying polyQ-induced toxicity are largely unknown. To gain insight into polyQ pathology, we performed a large-scale RNAi screen in Drosophila to identify modifiers of toxicity induced by expression of truncated Ataxin-3 containing a disease-causing polyQ expansion. We identified various unknown modifiers of polyQ toxicity. Large-scale analysis indicated a dissociation of polyQ aggregation and toxicity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/toxicidad , Interferencia de ARN , Proteínas Represoras/metabolismo , Animales , Ataxina-3 , Biología Computacional , Proteínas de Drosophila/química , Modelos Biológicos , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Péptidos/química , Estructura Cuaternaria de Proteína , Proteínas Represoras/química , Retina/efectos de los fármacos , Retina/patología
8.
PLoS One ; 5(8): e12247, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20806063

RESUMEN

Alteration and/or mutations of the ribonucleoprotein TDP-43 have been firmly linked to human neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The relative impacts of TDP-43 alteration, mutation, or inherent protein function on neural integrity, however, remain less clear--a situation confounded by conflicting reports based on transient and/or random-insertion transgenic expression. We therefore performed a stringent comparative investigation of impacts of these TDP-43 modifications on neural integrity in vivo. To achieve this, we systematically screened ALS/FTLD-associated and synthetic TDP-43 isoforms via same-site gene insertion and neural expression in Drosophila; followed by transposon-based motor neuron-specific transgenesis in a chick vertebrate system. Using this bi-systemic approach we uncovered a requirement of inherent TDP-43 RNA-binding function--but not ALS/FTLD-linked mutation, mislocalization, or truncation--for TDP-43-mediated neurotoxicity in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Línea Celular , Pollos/genética , Pollos/metabolismo , Pollos/fisiología , Proteínas de Unión al ADN/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Degeneración Lobar Frontotemporal/genética , Regulación de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Locomoción , Longevidad , Masculino , Neuronas Motoras/metabolismo , Mutación , Neuronas/citología , Especificidad de Órganos , Unión Proteica , Transporte de Proteínas
9.
Infect Immun ; 74(8): 4950-3, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16861688

RESUMEN

Staphyloxanthin is a membrane-bound carotenoid of Staphylococcus aureus. Here we studied the interaction of staphyloxanthin with reactive oxygen substances (ROS) and showed by comparative analysis of the wild type (WT) and an isogenic crtM mutant that the WT is more resistant to hydrogen peroxide, superoxide radical, hydroxyl radical, hypochloride, and neutrophil killing.


Asunto(s)
Oxidantes/farmacología , Estrés Oxidativo/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Xantófilas/metabolismo , Recuento de Colonia Microbiana , Medios de Cultivo , Respuesta al Choque Térmico , Mutación , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Xantófilas/genética
10.
J Biol Chem ; 280(37): 32493-8, 2005 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-16020541

RESUMEN

Most Staphylococcus aureus strains produce the orange carotenoid staphyloxanthin. The staphyloxanthin biosynthesis genes are organized in an operon, crtOPQMN, with a sigma(B)-dependent promoter upstream of crtO and a termination region downstream of crtN. The functions of the five encoded enzymes were predicted on the basis of their sequence similarity to known enzymes and by product analysis of gene deletion mutants. The first step in staphyloxanthin biosynthesis is the head-to-head condensation of two molecules of farnesyl diphosphate to form dehydrosqualene (4,4'-diapophytoene), catalyzed by the dehydrosqualene synthase CrtM. The dehydrosqualene desaturase CrtN dehydrogenates dehydrosqualene to form the yellow, main intermediate 4,4'-diaponeurosporene. CrtP, very likely a mixed function oxidase, oxidizes the terminal methyl group of 4,4'-diaponeurosporene to form 4,4'-diaponeurosporenic acid. CrtQ, a glycosyltransferase, esterifies glucose at the C(1)'' position with the carboxyl group of 4,4'-diaponeurosporenic acid to yield glycosyl 4,4'-diaponeurosporenoate; this compound was the major product in the clone expressing crtPQMN. In the final step, the acyltransferase CrtO esterifies glucose at the C(6)'' position with the carboxyl group of 12-methyltetradecanoic acid to yield staphyloxanthin. Staphyloxanthin overexpressed in Staphylococcus carnosus (pTX-crtOPQMN) and purified was analyzed by high pressure liquid chromatography-mass spectroscopy and NMR spectroscopy. Staphyloxanthin was identified as beta-D-glucopyranosyl 1-O-(4,4'-diaponeurosporen-4-oate)-6-O-(12-methyltetradecanoate).


Asunto(s)
Staphylococcus aureus/metabolismo , Xantófilas/biosíntesis , Xantófilas/química , Aciltransferasas/genética , Proteínas Bacterianas/genética , Proliferación Celular , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , ADN/metabolismo , Cartilla de ADN/química , Farnesil Difosfato Farnesil Transferasa/genética , Cromatografía de Gases y Espectrometría de Masas , Glicosiltransferasas/genética , Espectroscopía de Resonancia Magnética , Oxigenasas de Función Mixta/genética , Modelos Químicos , Datos de Secuencia Molecular , Mutación , Operón , Oxidorreductasas/genética , Regiones Promotoras Genéticas , Conformación Proteica , Estructura Terciaria de Proteína , Espectrofotometría , Factores de Tiempo
11.
Inorg Chem ; 41(18): 4624-6, 2002 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-12206683

RESUMEN

The new heterodinuclear mixed valence complex [Fe(III)Mn(II)(BPBPMP)(OAc)(2)]ClO(4) (1) with the unsymmetrical N(5)O(2) donor ligand 2-bis[((2-pyridylmethyl)-aminomethyl)-6-((2-hydroxybenzyl)(2-pyridylmethyl))-aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. Compound 1 crystallizes in the monoclinic system, space group P2(1)/c, and has an Fe(III)Mn(II)(mu-phenoxo)-bis(mu-carboxylato) core. Two quasireversible electron transfers at -870 and +440 mV versus Fc/Fc(+) corresponding to the Fe(II)Mn(II)/Fe(III)Mn(II) and Fe(III)Mn(II)/Fe(III)Mn(III) couples, respectively, appear in the cyclic voltammogram. The dinuclear Fe(III)Mn(II) center has weakly antiferromagnetic coupling with J = -6.8 cm(-1) and g = 1.93. The (57)Fe Mössbauer spectrum exhibits a single doublet, delta = 0.48 mm s(-1) and DeltaE(Q) = 1.04 mm s(-1) for the high spin Fe(III) ion. Phosphatase-like activity at pH 6.7 with the substrate 2,4-bis(dinitrophenyl)phosphate reveals saturation kinetics with the following Michaelis-Menten constants: K(m) = 2.103 mM, V(max) = 1.803 x 10(-5) mM s(-1), and k(cat) = 4.51 x 10(-4) s(-1).


Asunto(s)
Fosfatasa Ácida/química , Compuestos Férricos/química , Compuestos Férricos/síntesis química , Ipomoea batatas/enzimología , Manganeso/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA