Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 145(51): 27933-27938, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38088870

RESUMEN

Generally, the relationship between the observed circular dichroism and the enantiomeric excess in chiral systems (CD-ee dependence) is linear. While positive nonlinear behavior has often been reported in the past, examples of negative nonlinear (NN) behavior in CD-ee dependence are rare and not well understood. Here, we present a strong NN CD-ee dependence within polycrystalline thin films of BINOL by using second-harmonic-generation circular dichroism (SHG-CD) and commercial CD spectroscopy studies. Theoretical calculations, microscopy, and FTIR studies are employed to further clarify the underlying cause of this observation. This behavior is attributed to the changing supramolecular chirality of the system. Systems exhibiting NN CD-ee dependence hold promise for highly accurate enantiomeric excess characterization, which is essential for the refinement of enantio-separating and -purifying processes in pharmaceuticals, asymmetric catalysis, and chiral sensing. Our findings suggest that a whole class of single-species systems, i.e., racemate crystals, might possess NN CD-ee dependence and thus provide us a vast playground to better understand and exploit this phenomenon.

2.
J Am Chem Soc ; 144(31): 14079-14089, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895312

RESUMEN

Hybrid organic-inorganic networks that incorporate chiral molecules have attracted great attention due to their potential in semiconductor lighting applications and optical communication. Here, we introduce a chiral organic molecule (R)/(S)-1-cyclohexylethylamine (CHEA) into bismuth-based lead-free structures with an edge-sharing octahedral motif, to synthesize chiral lead-free (R)/(S)-CHEA4Bi2BrxI10-x crystals and thin films. Using single-crystal X-ray diffraction measurements and density functional theory calculations, we identify crystal and electronic band structures. We investigate the materials' optical properties and find circular dichroism, which we tune by the bromide-iodide ratio over a wide wavelength range, from 300 to 500 nm. We further employ transient absorption spectroscopy and time-correlated single photon counting to investigate charge carrier dynamics, which show long-lived excitations with optically induced chirality memory up to tens of nanosecond timescales. Our demonstration of chirality memory in a color-tunable chiral lead-free semiconductor opens a new avenue for the discovery of high-performance, lead-free spintronic materials with chiroptical functionalities.

3.
Chirality ; 34(3): 550-558, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989021

RESUMEN

The ICD phenomenon has drawn a lot of attention in recent years in applicable fields such as chiral sensing and chiroptical devices. In this work, we first gaze at the issues of thin spin-coated films not being able to deliver consistent ICD signals. A hypothesis of the underlying problem is proposed through a brief elucidation of the spin-coating process. To confirm and eliminate the uncontrollable dynamic factors with spin coating, we then dedicate our efforts to develop a new gel system based on chiral L-/D-N',N'-Dibenzoyl-cystine. Achiral dye molecules are intercalated in a DBC gel through a "one-step" preparation procedure. Compared to the former spin-coating system, significantly improved reproducibility of the new gel system is demonstrated. Besides, the ICD signals can be customized in a broad spectral range (wavelength tunability) by substituting dye molecules. Finally, we discuss the potential applications of this interesting system.


Asunto(s)
Dicroismo Circular , Geles , Reproducibilidad de los Resultados , Estereoisomerismo
4.
Chirality ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33091214

RESUMEN

We present aspects of emerging optical activity in thin racemic 1,1'-Bi-2-naphthol films upon irradiation with circularly polarized light and subsequent resonant two-photon absorption in the sample. Thorough analysis of the sample morphology is conducted by means of (polarization-resolved) optical microscopy and scanning electron microscopy (SEM). The influence of crystallization on the nonlinear probing technique (second harmonic generation circular dichroism [SHG-CD]) is investigated. Optical activity and crystallization are brought together by a systematic investigation in different crystallization regimes. We find crystallization to be responsible for two counter-acting effects, which arise for different states of crystallization. Measuring crystallized samples offers the best signal-to-noise ratio, but it limits generation of optical activity due to self-assembly effects. For suppression of crystallization on the other hand, there is a clear indication that enantiomeric selective desorption is responsible for the generation of optical activity in the sample. We reach the current resolution limit of probing with SHG-CD, as we suppress the crystallization in the racemic sample during desorption. In addition, intensity-dependent measurements on the induced optical activity reveal an onset threshold (≈0.7 TW cm-2), above which higher order nonlinear processes impair the generation of optical activity by desorption with CPL.

5.
Chemistry ; 25(12): 3061-3067, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30600843

RESUMEN

In this work the temperature-dependent photoluminescence of alkyl-capped silicon nanocrystals with mean diameters of between 3 and 9 nm has been investigated. The nanocrystals were characterized extensively by FTIR, TEM, powder XRD, and X-ray photoelectron spectroscopy prior to low-temperature and time-resolved photoluminescence spectroscopy experiments. The photoluminescence (PL) properties were evaluated in the temperature range of 41-300 K. We found that the well-known temperature-dependent blueshift of the PL maximum decreases with increasing nanocrystal diameter and eventually becomes a redshift for nanocrystal diameters larger than 6 nm. This implies that the observed shifts cannot be explained solely by band-gap widening, as is commonly assumed. We propose that the luminescence of drop-cast silicon nanocrystals is affected by particle ensemble effects, which can explain the otherwise surprising temperature dependence of the luminescence peak.

6.
Chemphyschem ; 20(1): 134-141, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30403318

RESUMEN

In this work, we present an experimental setup for the in situ and ex situ study of the optical activity of samples, which can be prepared under ultra-high vacuum (UHV) conditions by second-harmonic generation circular dichroism (SHG-CD) over a broad spectral range. The use of a racemic mixture as a qualified reference for the anisotropy factor is described and, as an example, the chiroptical properties of 1.5 µm thick (multilayers) as well as sub-monolayer thin films of the R- and S-enantiomer of 1,1'-Bi-2-naphthol (BINOL) evaporated onto BK7 substrates were investigated.

7.
Chemphyschem ; 20(1): 62-69, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30444574

RESUMEN

We have studied the circular dichroism (CD), in the ultraviolet and visible regions, of the transparent, chiral molecule 1,1'-Bi-2-naphtol (BINOL) in 1.5 µm thick films. The initial transparent film shows an additional negative cotton effect in the CD compared to solution. With time under room temperature the film undergoes a structural phase transition. This goes hand in hand with a cotton effect at the low energy absorption band which inverts with opposite propagation direction of light through the film which is revealed as a polarity reversal of ellipticity (PRE). After completion of the phase transition the film exhibits circular differential scattering throughout the visible range which also shows PRE. The structure change was studied with Raman, microscopy under cross polarization conditions and nonlinear second-harmonic generation circular dichroism (SHG-CD). The superposition of the optical activity of individual molecules and isotropy effects makes an interpretation challenging. Yet overcoming this challenge by finding a suitable model structural information can be derived from CD measurements.

8.
Chirality ; 31(9): 641-657, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31318108

RESUMEN

Heterogeneous catalysis has vastly benefited from investigations performed on model systems under well-controlled conditions. The application of most of the techniques utilized for such studies is not feasible for asymmetric reactions as enantiomers possess identical physical and chemical properties unless while interacting with polarized light and other chiral entities. A thorough investigation of a heterogeneous asymmetric catalytic process should include probing the catalyst prior to, during, and after the reaction as well as the analysis of reaction products to evaluate the achieved enantiomeric excess. I present recent studies that demonstrate the strength of chiroptical spectroscopic methods to tackle the challenges in investigating model heterogeneous asymmetric catalysis covering all the abovementioned aspects.

9.
Angew Chem Int Ed Engl ; 58(44): 15685-15689, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31393661

RESUMEN

The interest in enantioseparation and enantiopurification of chiral molecules has been drastically increasing over the past decades, since these are important steps in various disciplines such as pharmaceutical industry, asymmetric catalysis, and chiral sensing. By exposing racemic samples of BINOL (1,1'-bi-2-naphthol) coated onto achiral glass substrates to circularly polarized light, we unambiguously demonstrate that by controlling the handedness of circularly polarized light, preferential desorption of enantiomers can be achieved. There are currently no mechanisms known that would describe this phenomenon. Our observation together with a simplified phenomenological model suggests that the process of laser desorption needs to be further developed and the contribution of quantum mechanical processes should be revisited to account for these data. Asymmetric laser desorption provides us with a contamination-free technique for the enantioenrichment of chiral compounds.

10.
Chemphyschem ; 19(6): 715-723, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29239510

RESUMEN

Using density functional theory and its time-dependent extension for excited states, the S0 →S1 high-resolution vibronic absorption and electronic circular dichroism spectra of (R)-(+)-1-phenylethanol are computed and compared to experimental spectra measured in jet-cooled conditions in the region within 1000 cm-1 of the 0-0 transition. The agreement between theory and computation is satisfactory and allows a confident assignment of several experimental bands in terms of fundamentals of different modes. Cases are documented for which the analysis of optical anisotropy factors, owing to their signed nature, remarkably enhances the possibility of a robust assignment of the experimental absorption bands. Computational analysis shows that the experimental spectra are dominated by Herzberg-Teller contributions and that the electronic circular dichroism spectrum and the anisotropy factors are also strongly modulated by the effect of Duschinsky mixings.

11.
Phys Chem Chem Phys ; 20(31): 20347-20351, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29971311

RESUMEN

Water-soluble ligand protected optically active silver nanostructures were synthesised in a one-step reduction and capping process mediated by thiol-containing biomolecules. The synthesis was performed successfully with d- and l-cysteine and l-glutathione. The chiroptical properties of the obtained nanostructures were investigated by circular dichroism spectroscopy in the ultraviolet and visible wavelength range. They exhibit a g-value of up to 0.7%, which is about one order of magnitude larger compared to particles prepared by citrate reduction followed by a ligand exchange reaction. The structure and composition of the prepared materials were characterised by transmission electron microscopy, energy-dispersive X-ray and X-ray photoelectron spectroscopy. Although these structures do not have a chiral geometry, they show mirror image g-values when capped with d- and l-cysteine. This indicates that the underlying chirality transfer mechanism is based on an electric field polarisation process.


Asunto(s)
Cisteína/química , Glutatión/química , Nanopartículas del Metal/química , Plata/química , Dicroismo Circular , Cisteína/metabolismo , Electricidad , Glutatión/metabolismo , Ligandos , Microscopía Electrónica de Transmisión , Espectroscopía de Fotoelectrones , Espectrometría por Rayos X , Estereoisomerismo , Agua/química
12.
Phys Chem Chem Phys ; 19(32): 21297-21303, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28650046

RESUMEN

Circular dichroism-resonance-enhanced multiphoton ionization (CD-REMPI) was used for CD measurements on several single vibronic transitions of supersonic beam-cooled (R)-(+)-1-phenylethanol. Due to the low molecular densities within a supersonic beam and the expected small anisotropy factor of 1-phenylethanol in the permille region, the precision of the experimental method had to be significantly improved. Therefore, a single laser pulse evaluation combined with a twin-peak technique enabled within the used supersonic beam setup is presented. For the electronic transition S0 → S1 of (R)-(+)-1-phenylethanol (π → π* transition of the phenyl ring at 266 nm) ten different vibrational modes as well as the 0-transition were investigated with one-color (1 + 1) CD-REMPI. The results deliver new experimental insights on the influence of molecular vibrations on the anisotropy factor. TD-DFT theoretical predictions show how the angle between the electronic and magnetic transition dipole moments of the electronic transition can be modified by different vibrational modes, making even a flip of the sign of the anisotropy factor possible.

13.
J Phys Chem A ; 121(1): 133-140, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27992215

RESUMEN

The structures of gas-phase M+(CO2)n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO2 asymmetric stretch around 2350 cm-1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO2, consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M+(CO2)2] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

14.
Chemphyschem ; 17(24): 4052-4058, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27809379

RESUMEN

UV spectroscopy and electronic circular dichroism (ECD) experiments on supersonic-beam-cooled deuterated (R)-(+)-3-methylcyclopentanone ([D4 ]-(R)-(+)-3-MCP) have been performed by using a laser mass spectrometer. The spectral resolution not only allowed excitation and CD measurements for single vibronic transitions but also for the rotational P, Q, and R branches of these transitions. The investigated n→π*18042501 transition showed the largest anisotropy factor ever observed for chiral molecules in the gas phase, which, due to residual saturation of the excited transition, represents only a lower limit for the real anisotropy factor. Furthermore, one-color (1+1+1) and two-color (1+1') resonance-enhanced multiphoton ionization (REMPI) measurements were performed and the effusive-beam (room temperature) and supersonic-beam results for [D4 ]-(R)-(+)-3-MCP were compared. These results allowed a differentiation between single-step ECD (comparable to conventional ECD) and cumulative ECD (only possible in multiphoton excitation) under supersonic-beam conditions.

15.
Phys Chem Chem Phys ; 18(7): 5299-305, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26818786

RESUMEN

1,4-Di-n-octyloxy-2,5-bis(pyren-1-ylethenyl)benzene (bis-pyrene) has been studied by the means of surface cavity ring-down (s-CRD) spectroscopy on an amorphous BK7 glass substrate and scanning tunnelling microscopy (STM) on Au(111). Absorption spectra show a modification of the optical properties as a function of coverage, i.e. appearance of a shoulder around 505 nm followed by a saturation of the intensity of this signal observed at higher coverages. We attribute this shoulder to the change of the molecular orientation between the first and the second monolayer and thus to an interfacial effect. These results are confirmed by scanning tunnelling microscopy (STM) measurements where the bis-pyrene molecules have been deposited on Au(111) at room temperature (RT) and onto a cold substrate. Independently of the temperature in the range from 210 K to RT, the first monolayer is always highly organized. At low temperature bis-pyrene molecules constituting the second monolayer are randomly distributed, suggesting that self-organisation is kinetically hindered. Deposited at room temperature, the molecular diffusion is enhanced and the formation of an organized second layer takes place after storing the sample for 150 minutes at room temperature. A HOMO-LUMO gap of 2.85 eV has been determined by scanning tunnelling spectroscopy, which is in very good agreement with the observed optical transition at 434 nm (2.86 eV) in s-CRD spectroscopy.

16.
Phys Chem Chem Phys ; 17(27): 17541-4, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26037213

RESUMEN

The plasmonic behavior of size-selected supported silver clusters is studied by surface second harmonic generation spectroscopy for the first time. A blue shift of ∼0.2 eV in the plasmon resonance is observed with decreasing cluster size from Ag55 to Ag9. In addition to the general blue shift, a nonscalable size-dependence is also observed in plasmonic behavior of Ag nanoclusters, which is attributed to varying structural properties of the clusters. The results are in quantitative agreement with a hybrid theoretical model based on Mie theory and the existing DFT calculations.

17.
J Chem Phys ; 143(12): 124302, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26429006

RESUMEN

The near ultraviolet photodissociation dynamics of silver atom-rare gas dimers have been studied by velocity map imaging. Ag-RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ((2)Σ(+))←X ((2)Σ(+)) continuum leading to direct, near-threshold dissociation generating Ag* ((2)P3/2) + RG ((1)S0) products. Images recorded at excitation wavelengths throughout the C ((2)Σ(+))←X ((2)Σ(+)) continuum, coupled with known atomic energy levels, permit determination of the ground X ((2)Σ(+)) state dissociation energies of 85.9 ± 23.4 cm(-1) (Ag-Ar), 149.3 ± 22.4 cm(-1) (Ag-Kr), and 256.3 ± 16.0 cm(-1) (Ag-Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm(-1), which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag2.

18.
Angew Chem Int Ed Engl ; 54(4): 1357-60, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25475369

RESUMEN

We report the observation of chemical reactions in gas-phase Rh(n)(N2O)m(+) complexes driven by absorption of blackbody radiation. The experiments are performed under collision-free conditions in a Fourier transform ion cyclotron resonance mass spectrometer. Mid-infrared absorption by the molecularly adsorbed N2O moieties promotes a small fraction of the cluster distribution sufficiently to drive the N2O decomposition reaction, leading to the production of cluster oxides and the release of molecular nitrogen. N2O decomposition competes with molecular desorption and the branching ratios for the two processes show marked size effects, reflecting variations in the relative barriers. The rate of decay is shown to scale approximately linearly with the number of infrared chromophores. The experimental findings are interpreted in terms of calculated infrared absorption rates assuming a sudden-death limit.

19.
Phys Chem Chem Phys ; 16(2): 458-66, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24072103

RESUMEN

The spectroscopy and UV photodissociation dynamics of Cu2 and CuO have been studied using a combination of one- and two-colour excitation and velocity map imaging. Resonant excitation of Cu2 via the J ← X (1)Σg(+) transition leads to significant fragmentation which is interpreted in terms of a combination of direct dissociation of Cu2(+ 2)Π produced in the resonant two-photon ionization process and dissociation of excited Cu2 states above the ionization threshold. By fitting of the kinetic energy release spectra obtained from the velocity map images, we determine a value for the dissociation energy of the cation of D0 (Cu2(+), X (2)Σg(+)) of 1.713 ± 0.025 eV, which, when combined with known ionization energies, yields D0 (Cu2, X (1)Σg(+)) = 1.886 ± 0.026 eV. In other experiments, resonant two colour (1 + 1') excitation of CuO via a range of excited states (C, D, F, H), yields unusually simple VMI images indicating fragmentation into a single dissociation channel which has been identified as Cu* (2)D3/2 + O* (1)D. Taken together, this data gives a CuO bond dissociation energy of 3.041 ± 0.030 eV. Finally, the production of Cu2(+) with kinetic energy = 705 ± 75 cm(-1) is tentatively interpreted as photolysis of Cu3 yielding Cu* + Cu2 X (1)Σg(+) from which a dissociation energy of Cu3 of 0.605 ± 0.030 eV is deduced.

20.
Phys Chem Chem Phys ; 16(16): 7299-306, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24618806

RESUMEN

Well defined thin molecular films of 2,2'-dihydroxy-1,1'binaphthyl (binol) molecules at coverages between 5 × 10(15) molecules per cm(2) and 10(17) molecules per cm(2) on thin glass (BK7) substrates were investigated under ultra-high-vacuum (UHV) conditions. Second-Harmonic-Generation Optical-Rotatory-Dispersion measurements (SHG-ORD) were performed using a dedicated spectroscopic setup which allows for the determination of the rotation angle of the SH-signal of two enantiomers. Rotation angles of up to 38 degrees were measured. The chirality of the two enantiomers has been studied at 674 nm (337 nm resonance wavelength) in the transmission mode. Coverage dependent orientation evolution of binol molecular films was revealed by precise monitoring of the surface coverage while performing SHG-ORD experiments. We show that the molecules reach their final orientation at a surface coverage of 5 × 10(16) molecules per cm(2). From the obtained experimental data the ratio of chiral and achiral susceptibility components could be calculated and was observed to change with coverage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA