Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cryo Letters ; 38(6): 463-470, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29734442

RESUMEN

BACKGROUND: Cryopreservation opens new avenues in the field of genetic resource conservation, especially in recalcitrant seeded palms such as arecanut for which field genebanks are exposed to pest and disease attacks and natural calamities. It is only through cryopreservation that the safety of the conserved germplasm can be assured at a relatively low cost for extended periods. OBJECTIVE: The objective of this work was to standardize various aspects of arecanut pollen cryopreservation, viz. collection and desiccation of pollen, in vitro germination, viability and fecundity studies. MATERIALS AND METHODS: Pollens of three arecanut genotypes (Sumangala, Hirehalli Dwarf and Hirehalli Dwarf x Sumangala) were collected in December 2013-February 2014. In vitro viability tests were conducted using fresh and desiccated pollen. Desiccated pollen was cryopreserved by direct immersion in liquid nitrogen and cryostored for different durations (24 hours to 2 years). Viability and fertility studies were conducted using cryopreserved pollen. RESULTS: Pollen extraction was achieved from fully opened male flowers by desiccation at room temperature (33-34 degree C). A medium containing 2.5 g/L sucrose was found to be best for in vitro germination at room temperature. There was no significant difference in germination between desiccated and cryopreserved pollen whereas pollen tube length decreased significantly after cryopreservation. Fertility studies using HD x Sumangala pollen cryostored for various durations (1 month, 1 year and 2 years) showed the setting of 70, 43 and 62%, respectively. Normal nut set was observed using cryopreserved pollen. CONCLUSION: Pollen cryopreservation is a viable option for germplasm conservation and hybridization programmes in arecanut.


Asunto(s)
Areca/fisiología , Criopreservación/métodos , Polen/fisiología , Areca/efectos de los fármacos , Areca/genética , Desecación , Fertilidad/efectos de los fármacos , Genotipo , Germinación/efectos de los fármacos , Germinación/fisiología , Polen/efectos de los fármacos , Tubo Polínico/anatomía & histología , Tubo Polínico/efectos de los fármacos , Estándares de Referencia , Sacarosa/farmacología , Temperatura , Supervivencia Tisular/efectos de los fármacos
2.
Cryo Letters ; 35(5): 407-17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25397956

RESUMEN

BACKGROUND: Coconut genetic resources are threatened by pests and pathogens, natural hazards and human activities. Cryopreservation is the only method allowing the safe and cost-effective long-term conservation of recalcitrant seed species such as coconut. OBJECTIVE: The objective of this work was to test the effect of cryopreservation and of cryostorage duration on coconut pollen germination and fertility. MATERIALS AND METHODS: Pollen of two coconut varieties (West Coast Tall WWCTW and Chowghat Orange Dwarf CODC) was collected in March-May over three successive years, desiccated to 7.5 % moisture content (FW) and cryopreserved by direct immersion in liquid nitrogen. RESULTS: Germination and pollen tube length (PTL) of desiccated and cryopreserved pollen were not significantly different for both WCT and COD over the three harvest months of the three consecutive years of study. Pollen germination ranged from 24 to 32 % in desiccated pollen whereas it was between 26 and 29 % in cryopreserved COD pollen. In the case of WCT, germination ranged from 30 to 31 % in desiccated pollen, while it was between 28 and 32 % in cryopreserved pollen. PTL of cryopreserved pollen ranged between 224-390 nm and 226-396 mm for COD and WCT, respectively. Germination of COD pollen varied between 29.0 and 44.1 % after 4 years and 1.0/1.5 years cryostorage, respectively. Germination of WCT pollen did not change significantly between 0 and 6 years cryostorage, being comprised between 32 (24 h) and 40 % (1.5 years). Germination and vigour of cryopreserved pollen were generally higher compared to that of pollen dried in oven and non-cryopreserved. Normal seed set was observed in COD and WCT palms using pollen cryostored for 6 months and 4 years. Cryopreserved pollen of five Tall and five Dwarf accessions displayed 24-31 % and 25-49 % germination, respectively. CONCLUSION: These results show that it is now possible to establish pollen cryobanks to contribute to coconut germplasm long-term conservation.


Asunto(s)
Cocos/crecimiento & desarrollo , Criopreservación/métodos , Polen/crecimiento & desarrollo , Desecación , Germinación
3.
Cryo Letters ; 32(4): 317-28, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22020411

RESUMEN

The present study investigates the effect of preculture conditions, vitrification and unloading solutions on survival and regeneration of coconut zygotic embryos after cryopreservation. Among the seven plant vitrification solutions tested, PVS3 was found to be the most effective for regeneration of cryopreserved embryos. The optimal protocol involved preculture of embryos for 3 days on medium with 0.6 M sucrose, PVS3 treatment for 16 h, rapid cooling and rewarming and unloading in 1.2 M sucrose liquid medium for 1.5 h. Under these conditions, 70-80 survival (corresponding to size enlargement and weight gain) was observed with cryopreserved embryos and 20-25 percent of the plants regenerated (showing normal shoot and root growth) from cryopreserved embryos were established in pots.


Asunto(s)
Cocos/crecimiento & desarrollo , Criopreservación/métodos , Cocos/embriología , Cocos/fisiología , Crioprotectores/farmacología , Medios de Cultivo/metabolismo , Dimetilsulfóxido/química , Glicerol/química , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Sacarosa/química , Factores de Tiempo , Vitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA