Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865313

RESUMEN

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Asunto(s)
Acidosis Láctica , Alanina , Músculo Esquelético , Complejo Piruvato Deshidrogenasa , Ácido Pirúvico , Animales , Ratones , Acidosis Láctica/fisiopatología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Glutamina/metabolismo , Alanina/metabolismo , Eliminación de Gen , Dieta , Mortalidad Prematura
2.
Cardiovasc Diabetol ; 22(1): 73, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978133

RESUMEN

BACKGROUND: Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS: Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS: Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS: Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Masculino , Ratones , Aldehído Reductasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Modelos Animales de Enfermedad , Distribución Aleatoria
3.
Circ Res ; 128(10): 1487-1513, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33983836

RESUMEN

Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.


Asunto(s)
Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/biosíntesis , Aminoácidos de Cadena Ramificada/metabolismo , Comorbilidad , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/genética , Epigénesis Genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucólisis , Insuficiencia Cardíaca/terapia , Humanos , Resistencia a la Insulina , Cuerpos Cetónicos/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Obesidad/metabolismo , Oxidación-Reducción
4.
Cardiovasc Drugs Ther ; 37(2): 413-420, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150384

RESUMEN

Branched-chain amino acids (BCAAs) are essential amino acids which have critical roles in protein synthesis and energy metabolism in the body. In the heart, there is a strong correlation between impaired BCAA oxidation and contractile dysfunction in heart failure. Plasma and myocardial levels of BCAA and their metabolites, namely branched-chain keto acids (BCKAs), are also linked to cardiac insulin resistance and worsening adverse remodelling in the failing heart. This review discusses the regulation of BCAA metabolism in the heart and the impact of depressed cardiac BCAA oxidation on cardiac energy metabolism, function, and structure in heart failure. While impaired BCAA oxidation in the failing heart causes the accumulation of BCAA and BCKA in the myocardium, recent evidence suggested that the BCAAs and BCKAs have divergent effects on the insulin signalling pathway and the mammalian target of the rapamycin (mTOR) signalling pathway. Dietary and pharmacological interventions that enhance cardiac BCAA oxidation and limit the accumulation of cardiac BCAAs and BCKAs have been shown to have cardioprotective effects in the setting of ischemic heart disease and heart failure. Thus, targeting cardiac BCAA oxidation may be a promising therapeutic approach for heart failure.


Asunto(s)
Aminoácidos de Cadena Ramificada , Insuficiencia Cardíaca , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Corazón , Miocardio/metabolismo , Insulina , Insuficiencia Cardíaca/metabolismo , Cetoácidos/metabolismo
5.
Diabetologia ; 65(3): 411-423, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994805

RESUMEN

Diabetes contributes to the development of heart failure through various metabolic, structural and biochemical changes. The presence of diabetes increases the risk for the development of cardiovascular disease (CVD), and since the introduction of cardiovascular outcome trials to test diabetic drugs, the importance of improving our understanding of the mechanisms by which diabetes increases the risk for heart failure has come under the spotlight. In addition to the coronary vasculature changes that predispose individuals with diabetes to coronary artery disease, diabetes can also lead to cardiac dysfunction independent of ischaemic heart disease. The hyperlipidaemic, hyperglycaemic and insulin resistant state of diabetes contributes to a perturbed energy metabolic milieu, whereby the heart increases its reliance on fatty acids and decreases glucose oxidative rates. In addition to changes in cardiac energy metabolism, extracellular matrix remodelling contributes to the development of cardiac fibrosis, and impairments in calcium handling result in cardiac contractile dysfunction. Lipotoxicity and glucotoxicity also contribute to impairments in vascular function, cardiac contractility, calcium signalling, oxidative stress, cardiac efficiency and lipoapoptosis. Lastly, changes in protein acetylation, protein methylation and DNA methylation contribute to a myriad of gene expression and protein activity changes. Altogether, these changes lead to decreased cardiac efficiency, increased vulnerability to an ischaemic insult and increased risk for the development of heart failure. This review explores the above mechanisms and the way in which they contribute to cardiac dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Oxidación-Reducción
6.
J Card Fail ; 26(11): 998-1005, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32442517

RESUMEN

Ketone bodies can become a major source of adenosine triphosphate production during stress to maintain bioenergetic homeostasis in the brain, heart, and skeletal muscles. In the normal heart, ketone bodies contribute from 10% to 15% of the cardiac adenosine triphosphate production, although their contribution during pathologic stress is still not well-characterized and currently represents an exciting area of cardiovascular research. This review focuses on the mechanisms that regulate circulating ketone levels under physiologic and pathologic conditions and how this impacts cardiac ketone metabolism. We also review the current understanding of the role of augmented ketone metabolism as an adaptive response in different types and stages of heart failure. This analysis includes the emerging experimental and clinical evidence of the potential favorable effects of boosting ketone metabolism in the failing heart and the possible mechanisms of action through which these interventions may mediate their cardioprotective effects. We also critically appraise the emerging data from animal and human studies which characterize the role of ketones in mediating the cardioprotection established by the new class of antidiabetic drugs, namely sodium-glucose co-transporter inhibitors.


Asunto(s)
Insuficiencia Cardíaca , Animales , Metabolismo Energético , Corazón , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Cuerpos Cetónicos , Cetonas
7.
Cardiovasc Diabetol ; 19(1): 207, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287820

RESUMEN

BACKGROUND: Glucose oxidation is a major contributor to myocardial energy production and its contribution is orchestrated by insulin. While insulin can increase glucose oxidation indirectly by enhancing glucose uptake and glycolysis, it also directly stimulates mitochondrial glucose oxidation, independent of increasing glucose uptake or glycolysis, through activating mitochondrial pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. However, how insulin directly stimulates PDH is not known. To determine this, we characterized the impacts of modifying mitochondrial insulin signaling kinases, namely protein kinase B (Akt), protein kinase C-delta (PKC-δ) and glycogen synthase kinase-3 beta (GSK-3ß), on the direct insulin stimulation of glucose oxidation. METHODS: We employed an isolated working mouse heart model to measure the effect of insulin on cardiac glycolysis, glucose oxidation and fatty acid oxidation and how that could be affected when mitochondrial Akt, PKC-δ or GSK-3ß is disturbed using pharmacological modulators. We also used differential centrifugation to isolate mitochondrial and cytosol fraction to examine the activity of Akt, PKC-δ and GSK-3ß between these fractions. Data were analyzed using unpaired t-test and two-way ANOVA. RESULTS: Here we show that insulin-stimulated phosphorylation of mitochondrial Akt is a prerequisite for transducing insulin's direct stimulation of glucose oxidation. Inhibition of mitochondrial Akt completely abolishes insulin-stimulated glucose oxidation, independent of glucose uptake or glycolysis. We also show a novel role of mitochondrial PKC-δ in modulating mitochondrial glucose oxidation. Inhibition of mitochondrial PKC-δ mimics insulin stimulation of glucose oxidation and mitochondrial Akt. We also demonstrate that inhibition of mitochondrial GSK3ß phosphorylation does not influence insulin-stimulated glucose oxidation. CONCLUSION: We identify, for the first time, insulin-stimulated mitochondrial Akt as a prerequisite transmitter of the insulin signal that directly stimulates cardiac glucose oxidation. These novel findings suggest that targeting mitochondrial Akt is a potential therapeutic approach to enhance cardiac insulin sensitivity in condition such as heart failure, diabetes and obesity.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Insulina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosforilación , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Biochem J ; 476(12): 1695-1712, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217327

RESUMEN

The heart is the organ with highest energy turnover rate (per unit weight) in our body. The heart relies on its flexible and powerful catabolic capacity to continuously generate large amounts of ATP utilizing many energy substrates including fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The normal health mainly utilizes fatty acids (40-60%) and glucose (20-40%) for ATP production while ketones and amino acids have a minor contribution (10-15% and 1-2%, respectively). Mitochondrial oxidative phosphorylation is the major contributor to cardiac energy production (95%) while cytosolic glycolysis has a marginal contribution (5%). The heart can dramatically and swiftly switch between energy-producing pathways and/or alter the share from each of the energy substrates based on cardiac workload, availability of each energy substrate and neuronal and hormonal activity. The heart is equipped with a highly sophisticated and powerful mitochondrial machinery which synchronizes cardiac energy production from different substrates and orchestrates the rate of ATP production to accommodate its contractility demands. This review discusses mitochondrial cardiac energy metabolism and how it is regulated. This includes a discussion on the allosteric control of cardiac energy metabolism by short-chain coenzyme A esters, including malonyl CoA and its effect on cardiac metabolic preference. We also discuss the transcriptional level of energy regulation and its role in the maturation of cardiac metabolism after birth and cardiac adaptability for different metabolic conditions and energy demands. The role post-translational modifications, namely phosphorylation, acetylation, malonylation, succinylation and glutarylation, play in regulating mitochondrial energy metabolism is also discussed.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias Cardíacas/fisiología , Fosforilación Oxidativa , Transcripción Genética/fisiología , Regulación Alostérica/fisiología , Animales , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo
9.
J Mol Cell Cardiol ; 127: 223-231, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30615880

RESUMEN

The mitochondrial calcium uniporter (MCU) relays cytosolic Ca2+ transients to the mitochondria. We examined whether energy metabolism was compromised in hearts from mice with a cardiac-specific deficiency of MCU subjected to an isoproterenol (ISO) challenge. Surprisingly, isolated working hearts from cardiac MCU-deficient mice showed higher cardiac work, both in the presence or absence of ISO. These hearts were not energy-starved, with ISO inducing a similar increase in glucose oxidation rates compared to control hearts, but a greater increase in fatty acid oxidation rates. This correlated with lower levels of the fatty acid oxidation inhibitor malonyl CoA, and to an increased stimulatory acetylation of its degrading enzyme malonyl CoA decarboxylase and of the fatty acid ß-oxidation enzyme ß-hydroxyacyl CoA dehydrogenase. We conclude that impaired mitochondrial Ca2+ uptake does not compromise cardiac energetics due to a compensatory stimulation of fatty acid oxidation that provides a higher energy reserve during acute adrenergic stress.


Asunto(s)
Canales de Calcio/deficiencia , Ácidos Grasos/metabolismo , Miocardio/metabolismo , Acetilación , Animales , Canales de Calcio/metabolismo , Metabolismo Energético/efectos de los fármacos , Pruebas de Función Cardíaca , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/farmacología , Ratones , Especificidad de Órganos , Oxidación-Reducción , Fosforilación/efectos de los fármacos
10.
Cardiovasc Diabetol ; 18(1): 1, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626440

RESUMEN

BACKGROUND: In heart failure the myocardium becomes insulin resistant which negatively influences cardiac energy metabolism and function, while increasing cardiac insulin signalling improves cardiac function and prevents adverse remodelling in the failing heart. Glucagon's action on cardiac glucose and lipid homeostasis counteract that of insulin's action. We hypothesised that pharmacological antagonism of myocardial glucagon action, using a human monoclonal antibody (mAb A) against glucagon receptor (GCGR), a G-protein coupled receptor, will enhance insulin sensitivity and improve cardiac energy metabolism and function post myocardial infarction (MI). METHODS: Male C57BL/6 mice were subjected to a permanent left anterior descending coronary artery ligation to induce MI, following which they received either saline or mAb A (4 mg kg-1 week-1 starting at 1 week post-MI) for 3 weeks. RESULTS: Echocardiographic assessment at 4 weeks post-MI showed that mAb A treatment improved % ejection fraction (40.0 ± 2.3% vs 30.7 ± 1.7% in vehicle-treated MI heart, p < 0.05) and limited adverse remodelling (LV mass: 129 ± 7 vs 176 ± 14 mg in vehicle-treated MI hearts, p < 0.05) post MI. In isolated working hearts an increase in insulin-stimulated glucose oxidation was evident in the mAb A-treated MI hearts (1661 ± 192 vs 924 ± 165 nmol g dry wt-1 min-1 in vehicle-treated MI hearts, p < 0.05), concomitant with a decrease in ketone oxidation and fatty acid oxidation rates. The increase in insulin stimulated glucose oxidation was accompanied by activation of the IRS-1/Akt/AS160/GSK-3ß pathway, an increase in GLUT4 expression and a reduction in pyruvate dehydrogenase phosphorylation. This enhancement in insulin sensitivity occurred in parallel with a reduction in cardiac branched chain amino acids content (374 ± 27 vs 183 ± 41 µmol g protein-1 in vehicle-treated MI hearts, p < 0.05) and inhibition of the mTOR/P70S6K hypertrophic signalling pathway. The MI-induced increase in the phosphorylation of transforming growth factor ß-activated kinase 1 (p-TAK1) and p38 MAPK was also reduced by mAb A treatment. CONCLUSIONS: mAb A-mediated cardioprotection post-myocardial infarction is associated with improved insulin sensitivity and a selective enhancement of glucose oxidation via, at least in part, enhancing branched chain amino acids catabolism. Antagonizing glucagon action represents a novel and effective pharmacological intervention to alleviate cardiac dysfunction and adverse remodelling post-myocardial infarction.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Resistencia a la Insulina , Infarto del Miocardio/tratamiento farmacológico , Miocardio/metabolismo , Receptores de Glucagón/antagonistas & inhibidores , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Receptores de Glucagón/metabolismo , Recuperación de la Función , Transducción de Señal/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
11.
Cardiovasc Diabetol ; 18(1): 86, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277657

RESUMEN

BACKGROUND: Branched chain amino acids (BCAA) can impair insulin signaling, and cardiac insulin resistance can occur in the failing heart. We, therefore, determined if cardiac BCAA accumulation occurs in patients with dilated cardiomyopathy (DCM), due to an impaired catabolism of BCAA, and if stimulating cardiac BCAA oxidation can improve cardiac function in mice with heart failure. METHOD: For human cohorts of DCM and control, both male and female patients of ages between 22 and 66 years were recruited with informed consent from University of Alberta hospital. Left ventricular biopsies were obtained at the time of transplantation. Control biopsies were obtained from non-transplanted donor hearts without heart disease history. To determine if stimulating BCAA catabolism could lessen the severity of heart failure, C57BL/6J mice subjected to a transverse aortic constriction (TAC) were treated between 1 to 4-week post-surgery with either vehicle or a stimulator of BCAA oxidation (BT2, 40 mg/kg/day). RESULT: Echocardiographic data showed a reduction in ejection fraction (54.3 ± 2.3 to 22.3 ± 2.2%) and an enhanced formation of cardiac fibrosis in DCM patients when compared to the control patients. Cardiac BCAA levels were dramatically elevated in left ventricular samples of patients with DCM. Hearts from DCM patients showed a blunted insulin signalling pathway, as indicated by an increase in P-IRS1ser636/639 and its upstream modulator P-p70S6K, but a decrease in its downstream modulators P-AKT ser473 and in P-GSK3ß ser9. Cardiac BCAA oxidation in isolated working hearts was significantly enhanced by BT2, compared to vehicle, following either acute or chronic treatment. Treatment of TAC mice with BT2 significantly improved cardiac function in both sham and TAC mice (63.0 ± 1.8 and 56.9 ± 3.8% ejection fraction respectively). Furthermore, P-BCKDH and BCKDK expression was significantly decreased in the BT2 treated groups. CONCLUSION: We conclude that impaired cardiac BCAA catabolism and insulin signaling occur in human heart failure, while enhancing BCAA oxidation can improve cardiac function in the failing mouse heart.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Cardiomiopatía Dilatada/complicaciones , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/etiología , Resistencia a la Insulina , Miocardio/metabolismo , Adulto , Anciano , Animales , Ácidos Carboxílicos/farmacología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/patología , Oxidación-Reducción , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto Joven
12.
Diabetes Obes Metab ; 21(8): 1944-1955, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31050157

RESUMEN

AIMS: Obesity is associated with high rates of cardiac fatty acid oxidation, low rates of glucose oxidation, cardiac hypertrophy and heart failure. Whether weight loss can lessen the severity of heart failure associated with obesity is not known. We therefore determined the effect of weight loss on cardiac energy metabolism and the severity of heart failure in obese mice with heart failure. MATERIALS AND METHODS: Obesity and heart failure were induced by feeding mice a high-fat (HF) diet and subjecting them to transverse aortic constriction (TAC). Obese mice with heart failure were then switched for 8 weeks to either a low-fat (LF) diet (HF TAC LF) or caloric restriction (CR) (40% caloric intake reduction, HF TAC CR) to induce weight loss. RESULTS: Weight loss improved cardiac function (%EF was 38 ± 6% and 36 ± 6% in HF TAC LF and HF TAC CR mice vs 25 ± 3% in HF TAC mice, P < 0.05) and it decreased cardiac hypertrophy post TAC (left ventricle mass was 168 ± 7 and 171 ± 10 mg in HF TAC LF and HF TAC CR mice, respectively, vs 210 ± 8 mg in HF TAC mice, P < 0.05). Weight loss enhanced cardiac insulin signalling, insulin-stimulated glucose oxidation rates (1.5 ± 0.1 and 1.5 ± 0.1 µmol/g dry wt/min in HF TAC LF and HF TAC CR mice, respectively, vs 0.2 ± 0.1 µmol/g dry wt/min in HF TAC mice, P < 0.05) and it decreased pyruvate dehydrogenase phosphorylation. Cardiac fatty acid oxidation rates, AMPKTyr172 /ACCSer79 signalling and the acetylation of ß-oxidation enzymes, were attenuated following weight loss. CONCLUSIONS: Weight loss is an effective intervention to improve cardiac function and energy metabolism in heart failure associated with obesity.


Asunto(s)
Metabolismo Energético , Insuficiencia Cardíaca/fisiopatología , Miocardio/metabolismo , Obesidad/fisiopatología , Pérdida de Peso/fisiología , Animales , Restricción Calórica , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ingestión de Energía , Ácidos Grasos/metabolismo , Corazón/fisiopatología , Insuficiencia Cardíaca/etiología , Ratones , Ratones Obesos , Obesidad/complicaciones , Oxidación-Reducción
13.
Basic Res Cardiol ; 113(1): 6, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29242986

RESUMEN

Conditioning-like infarct limitation by enhanced level of hydrogen sulfide (H2S) has been demonstrated in many animal models of myocardial ischemia/reperfusion injury (MIRI) in vivo. We sought to evaluate the effect of H2S on myocardial infarction across in vivo pre-clinical studies of MIRI using a comprehensive systematic review followed by meta-analysis. Embase, Pubmed and Web of Science were searched for pre-clinical investigation of the effect of H2S on MIRI in vivo. Retained records (6031) were subjected to our pre-defined inclusion criteria then were objectively critiqued. Thirty-two reports were considered eligible to be included in this study and were grouped, based on the time of H2S application, into preconditioning and postconditioning groups. Data were pooled using random effect meta-analysis. We also investigated the possible impact of different experimental variables and the risk of bias on the observed effect size. Preconditioning with H2S (n = 23) caused a significant infarct limitation of - 20.25% (95% CI - 25.02, - 15.47). Similarly, postconditioning with H2S (n = 40) also limited infarct size by - 21.61% (95% CI - 24.17, - 19.05). This cardioprotection was also robust and consistent following sensitivity analyses where none of the pre-defined experimental variables had a significant effect on the observed infarct limitation. H2S shows a significant infarct limitation across in vivo pre-clinical studies of MIRI which include data from 825 animals. This infarct-sparing effect is robust and consistent when H2S is applied before ischemia or at reperfusion, independently on animal size or sulfide source. Validating this infarct limitation using large animals from standard medical therapy background and with co-morbidities should be the way forward.


Asunto(s)
Sulfuro de Hidrógeno , Poscondicionamiento Isquémico , Precondicionamiento Isquémico Miocárdico , Animales
16.
Pharmacol Res ; 111: 442-451, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27378570

RESUMEN

Exogenous hydrogen sulfide (H2S) protects against myocardial ischemia/reperfusion injury but the mechanism of action is unclear. The present study investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial infarction given specifically at reperfusion and the signalling pathway involved. Thiobutabarbital-anesthetised rats were subjected to 30min of left coronary artery occlusion and 2h reperfusion. Infarct size was assessed by tetrazolium staining. In the first study, animals randomly received either no treatment or GYY4137 (26.6, 133 or 266µmolkg(-1)) by intravenous injection 10min before reperfusion. In a second series, involvement of PI3K and NO signalling were interrogated by concomitant administration of LY294002 or L-NAME respectively and the effects on the phosphorylation of Akt, eNOS, GSK-3ß and ERK1/2 during early reperfusion were assessed by immunoblotting. GYY4137 266µmolkg(-1) significantly limited infarct size by 47% compared to control hearts (P<0.01). In GYY4137-treated hearts, phosphorylation of Akt, eNOS and GSK-3ß was increased 2.8, 2.2 and 2.2 fold respectively at early reperfusion. Co-administration of L-NAME and GYY4137 attenuated the cardioprotection afforded by GYY4137, associated with attenuated phosphorylation of eNOS. LY294002 totally abrogated the infarct-limiting effect of GYY4137 and inhibited Akt, eNOS and GSK-3ß phosphorylation. These data are the first to demonstrate that GYY4137 protects the heart against lethal reperfusion injury through activation of PI3K/Akt signalling, with partial dependency on NO signalling and inhibition of GSK-3ß during early reperfusion. H2S-based therapeutic approaches may have value as adjuncts to reperfusion in the treatment of acute myocardial infarction.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Morfolinas/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Compuestos Organotiofosforados/farmacología , Sustancias Protectoras/farmacología , Animales , Citoprotección , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hemodinámica/efectos de los fármacos , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
17.
Mar Drugs ; 13(4): 1710-25, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25826718

RESUMEN

The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems.


Asunto(s)
Quitosano/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Hipoglucemiantes/administración & dosificación , Insulina Regular Humana/administración & dosificación , Nanopartículas/química , Acetilación , Administración Oral , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/sangre , Composición de Medicamentos , Electrólitos/química , Humanos , Hiperglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Insulina Regular Humana/uso terapéutico , Masculino , Peso Molecular , Nanopartículas/ultraestructura , Tamaño de la Partícula , Distribución Aleatoria , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Propiedades de Superficie , Viscosidad
18.
Sci Rep ; 14(1): 1193, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216627

RESUMEN

High rates of cardiac fatty acid oxidation during reperfusion of ischemic hearts contribute to contractile dysfunction. This study aimed to investigate whether lysine acetylation affects fatty acid oxidation rates and recovery in post-ischemic hearts. Isolated working hearts from Sprague Dawley rats were perfused with 1.2 mM palmitate and 5 mM glucose and subjected to 30 min of ischemia and 40 min of reperfusion. Cardiac function, fatty acid oxidation, glucose oxidation, and glycolysis rates were compared between pre- and post-ischemic hearts. The acetylation status of enzymes involved in cardiac energy metabolism was assessed in both groups. Reperfusion after ischemia resulted in only a 41% recovery of cardiac work. Fatty acid oxidation and glycolysis rates increased while glucose oxidation rates decreased. The contribution of fatty acid oxidation to ATP production and TCA cycle activity increased from 90 to 93% and from 94.9 to 98.3%, respectively, in post-ischemic hearts. However, the overall acetylation status and acetylation levels of metabolic enzymes did not change in response to ischemia and reperfusion. These findings suggest that acetylation may not contribute to the high rates of fatty acid oxidation and reduced glucose oxidation observed in post-ischemic hearts perfused with high levels of palmitate substrate.


Asunto(s)
Lisina , Miocardio , Ratas , Animales , Miocardio/metabolismo , Lisina/metabolismo , Ratas Sprague-Dawley , Acetilación , Ácidos Grasos/metabolismo , Corazón/fisiología , Isquemia/metabolismo , Glucólisis/fisiología , Glucosa/metabolismo , Oxidación-Reducción , Palmitatos/metabolismo
19.
Metabolism ; 154: 155818, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369056

RESUMEN

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Glucosa/metabolismo , Volumen Sistólico , Miocardio/metabolismo , Oxidación-Reducción , Adenosina Trifosfato/metabolismo , Cetonas/farmacología , Cetonas/metabolismo
20.
Cardiovasc Res ; 120(4): 360-371, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193548

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS: Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION: In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Humanos , Animales , Ratones , Adenosina Trifosfato/metabolismo , Miocardio/metabolismo , Volumen Sistólico , Ratones Endogámicos C57BL , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Cetonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA