Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 56, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167342

RESUMEN

Determining the key elements of interconnected infrastructure and complex systems is paramount to ensure system functionality and integrity. This work quantifies the dominance of the networks' nodes in their respective neighborhoods, introducing a centrality metric, DomiRank, that integrates local and global topological information via a tunable parameter. We present an analytical formula and an efficient parallelizable algorithm for DomiRank centrality, making it applicable to massive networks. From the networks' structure and function perspective, nodes with high values of DomiRank highlight fragile neighborhoods whose integrity and functionality are highly dependent on those dominant nodes. Underscoring this relation between dominance and fragility, we show that DomiRank systematically outperforms other centrality metrics in generating targeted attacks that effectively compromise network structure and disrupt its functionality for synthetic and real-world topologies. Moreover, we show that DomiRank-based attacks inflict more enduring damage in the network, hindering its ability to rebound and, thus, impairing system resilience. DomiRank centrality capitalizes on the competition mechanism embedded in its definition to expose the fragility of networks, paving the way to design strategies to mitigate vulnerability and enhance the resilience of critical infrastructures.

2.
Sci Rep ; 14(1): 8084, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582896

RESUMEN

Time-domain solutions of Maxwell's equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are computationally intensive and require significant memory. Semi-analytical solutions (e.g., series expansion), such as those provided by the current theoretical framework of the multipole expansion, can be discouraging for practical case studies. This paper shows how sophisticated mathematical tools standard in modern physics can be leveraged to find semi-analytical solutions for arbitrary localized time-varying current distributions thanks to the novel time-domain Cartesian multipole expansion. We present the theory, apply it to a concrete application involving the imaging of an intricate current distribution, verify our results with an existing analytical approach, and compare the proposed method to a finite-difference time-domain numerical simulation. Thanks to the concept of current "pixels" introduced in this paper, we derive time-domain semi-analytical solutions of Maxwell's equations for arbitrary planar geometries.

3.
Beilstein J Nanotechnol ; 15: 817-829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979524

RESUMEN

Visible-light-driven photocatalysis using layered materials has garnered increasing attention regarding the degradation of organic dyes. Herein, transition-metal dichalcogenides MoS2 and WS2 prepared by chemical vapor deposition as well as their intermixing are evaluated for photodegradation (PD) of methylene blue under solar simulator irradiation. Our findings revealed that WS2 exhibited the highest PD efficiency of 67.6% and achieved an impressive PD rate constant of 6.1 × 10-3 min-1. Conversely, MoS2 displayed a somewhat lower PD performance of 43.5% but demonstrated remarkable stability. The intriguing result of this study relies on the synergetic effect observed when both MoS2 and WS2 are combined in a ratio of 20% of MoS2 and 80% of WS2. This precise blend resulted in an optimized PD efficiency and exceptional stability reaching 97% upon several cycles. This finding underscores the advantageous outcomes of intermixing WS2 and MoS2, shedding light on the development of an efficient and enduring photocatalyst for visible-light-driven photodegradation of methylene blue.

4.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615933

RESUMEN

Layered transition metals dichalcogenides such as MoS2 and WS2 have shown a tunable bandgap, making them highly desirable for optoelectronic applications. Here, we report on one-step chemical vapor deposited MoS2, WS2 and MoxW1-xS2 heterostructures incorporated into photoconductive devices to be examined and compared in view of their use as potential photodetectors. Vertically aligned MoS2 nanosheets and horizontally stacked WS2 layers, and their heterostructure form MoxW1-xS2, exhibit direct and indirect bandgap, respectively. To analyze these structures, various characterization methods were used to elucidate their properties including Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectrometry and high-resolution transmission electron microscopy. While all the investigated samples show a photoresponse in a broad wavelength range between 400 nm and 700 nm, the vertical MoS2 nanosheets sample exhibits the highest performances at a low bias voltage of 5 V. Our findings demonstrate a responsivity and a specific detectivity of 47.4 mA W-1 and 1.4 × 1011 Jones, respectively, achieved by MoxW1-xS2. This study offers insights into the use of a facile elaboration technique for tuning the performance of MoxW1-xS2 heterostructure-based photodetectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA