RESUMEN
BACKGROUND: Congenital heart disease is associated with an increased risk of smaller brain volumes and structural brain damage, and impaired growth of supratentorial brain structures in utero has been linked to poor neurodevelopmental outcomes. However, little is known on brainstem and cerebellar volumes in fetuses with congenital heart disease. Moreover, it is not clear whether impaired infratentorial growth, if present, is associated with only certain types of fetal cardiac defects or with supratentorial brain growth, and whether altered biometry is already present before the third trimester. OBJECTIVE: This study aimed to investigate brainstem and cerebellar volumes in fetuses with congenital heart disease and to compare them to infratentorial brain volumes in fetuses with normal hearts. Secondarily, the study aimed to identify associations between infratentorial brain biometry and the type of cardiac defects, supratentorial brain volumes, and gestational age. STUDY DESIGN: In this retrospective case-control study, 141 magnetic resonance imaging studies of 135 fetuses with congenital heart disease and 141 magnetic resonance imaging studies of 125 controls with normal hearts at 20 to 37 gestational weeks (median, 25 weeks) were evaluated. All cases and controls had normal birthweight and no evidence of structural brain disease or genetic syndrome. Six types of congenital heart disease were included: tetralogy of Fallot (n=32); double-outlet right ventricle (n=22); transposition of the great arteries (n=27); aortic obstruction (n=24); hypoplastic left heart syndrome (n=22); and hypoplastic right heart syndrome (n=14). First, brainstem and cerebellar volumes of each fetus were segmented and compared between cases and controls. In addition, transverse cerebellar diameters, vermian areas, and supratentorial brain and cerebrospinal fluid volumes were quantified and differences assessed between cases and controls. Volumetric differences were further analyzed according to types of cardiac defects and supratentorial brain volumes. Finally, volume ratios were created for each brain structure ([volume in fetus with congenital heart disease/respective volume in control fetus] × 100) and correlated to gestational age. RESULTS: Brainstem (cases, 2.1 cm3 vs controls, 2.4 cm3; P<.001) and cerebellar (cases, 3.2 cm3 vs controls, 3.4 cm3; P<.001) volumes were smaller in fetuses with congenital heart disease than in controls, whereas transverse cerebellar diameters (P=.681) and vermian areas (P=.947) did not differ between groups. Brainstem and cerebellar volumes differed between types of cardiac defects. Overall, the volume ratio of cases to controls was 80.8% for the brainstem, 90.5% for the cerebellum, and 90.1% for the supratentorial brain. Fetuses with tetralogy of Fallot and transposition of the great arteries were most severely affected by total brain volume reduction. Gestational age had no effect on volume ratios. CONCLUSION: The volume of the infratentorial brain, which contains structures considered crucial to brain function, is significantly smaller in fetuses with congenital heart disease than in controls from midgestation onward. These findings suggest that impaired growth of both supra- and infratentorial brain structures in fetuses with congenital heart disease occurs in the second trimester. Further research is needed to elucidate associations between fetal brain volumes and neurodevelopmental outcomes in congenital heart disease.
Asunto(s)
Cardiopatías Congénitas , Tetralogía de Fallot , Transposición de los Grandes Vasos , Encéfalo/patología , Tronco Encefálico/diagnóstico por imagen , Estudios de Casos y Controles , Cerebelo/diagnóstico por imagen , Femenino , Feto/patología , Edad Gestacional , Cardiopatías Congénitas/complicaciones , Humanos , Imagen por Resonancia Magnética/métodos , Embarazo , Estudios Retrospectivos , Tetralogía de Fallot/complicaciones , Tetralogía de Fallot/patologíaRESUMEN
INTRODUCTION: This retrospective study aims to describe systematically the fetal cerebral MR morphology in cases with occipital meningoencephaloceles using standard and advanced fetal MRI techniques. MATERIAL AND METHODS: The 1.5-tesla MR examinations (T1- and T2-weighted imaging, echo planar imaging, EPI, diffusion-weighted imaging, DWI) of 14 fetuses with occipital/parietal meningoencephaloceles were retrospectively analyzed for the classification of anatomic characteristics. A diffusion tensor sequence was performed in 5 cases. RESULTS: In 9/14 cases the occipital lobes were entirely or partially included in the encephalocele sac. Typical features of Chiari III malformation were seen in 6/14 cases. The displaced brain appeared grossly disorganized in 6/14. The brainstem displayed abnormal 'kinking'/rotation (3/14), a z-shape (1/14) and/or a molar tooth-like configuration of the midbrain (3/14). Tractography revealed the presence and position of sensorimotor tracts in 5/5 and the corpus callosum in 3/5. DWI was helpful in the identification of a displaced brain (in 8/9). EPI visualized the anatomy of draining cerebral veins in 7/9 cases. Clinical (9/14) and MRI (7/14) follow-up data are presented. DISCUSSION: Encephaloceles show a wide range of morphological heterogeneity. Fetal MRI serves as an accurate tool in the visualization of brainstem, white matter pathway and cerebral venous involvement and facilitates the detection of specific underlying syndromes such as ciliopathies.
Asunto(s)
Cerebro/patología , Encefalocele/patología , Enfermedades Fetales/patología , Diagnóstico Prenatal/métodos , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Embarazo , Estudios RetrospectivosRESUMEN
This case report presents a patient with a monochorionic twin pregnancy, development of twin-twin transfusion-syndrome (TTTS) and polymicrogyria (PMG) of one fetus. Due to TTTS grade 3, fetoscopic laser ablation was performed at gestational week 16+1. Sonographic follow-up showed a cortical malformation of the right parietal lobe in the former donor, which was identified as PMG by MRI scans. We describe the course of the pregnancy, as well as the clinical, especially neurological, development of the child over 3 years. This case report documents the power of neuroplasticity, leading to comparably good neurological outcome in an extensive, likely acquired cortical malformation. Further, it emphasises the importance of a thorough prenatal imaging characterisation of malformations of cortical development for optimal prenatal counselling of these cases.
Asunto(s)
Transfusión Feto-Fetal , Polimicrogiria , Niño , Femenino , Embarazo , Humanos , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/etiología , Transfusión Feto-Fetal/complicaciones , Transfusión Feto-Fetal/diagnóstico por imagen , Transfusión Feto-Fetal/cirugía , Pacientes , Fetoscopía , FetoRESUMEN
Simpson-Golabi-Behmel syndrome (SGBS) is a rare x-linked overgrowth syndrome with distinct clinical features, which is difficult to diagnose prenatally. We report the diagnosis of SGBS in dichorionic-diamniotic twin pregnancies in the first trimester by ultrasound and genetic testing. The affected fetus developed polyhydramnios and the cervical length of the mother decreased significantly. To save the unaffected twin, a selective feticide of the affected fetus was performed. Finally, the patient underwent preterm caesarean section due to premature rupture of membranes in the dead twin, and also intrauterine infection. While SGBS has been reported, this was the first case in a multiple pregnancy, with possible consequences for the healthy twin. In conclusion, SGBS is a rare condition, which should be considered in the differential diagnosis of prenatal overgrowth syndromes and associated malformation.
RESUMEN
BACKGROUND: Knowledge about extracardiac anomalies (ECA) in fetal congenital heart disease (CHD) can improve our understanding of the developmental origins of various outcomes in these infants. The prevalence and spectrum of ECA, including structural brain anomalies (SBA), on magnetic resonance imaging (MRI) in fetuses with different types of CHD and at different gestational ages, is unknown. OBJECTIVES: The purpose of this study was to evaluate ECA rates and types on MRI in fetuses with different types of CHD and across gestation. METHODS: A total of 429 consecutive fetuses with CHD and MRI between 17 and 38 gestational weeks were evaluated. ECA and SBA rates were assessed for each type of CHD and classified by gestational age (<25 or ≥25 weeks) at MRI. RESULTS: Of all 429 fetuses with CHD, 243 (56.6%) had ECA on MRI, and 109 (25.4%) had SBA. Among the 191 fetuses with normal genetic testing results, the ECA rate was 54.5% and the SBA rate 19.4%. Besides SBA, extrafetal (21.2%) and urogenital anomalies (10.7%) were the most prevalent ECA on MRI in all types of CHD. Predominant SBA were anomalies of hindbrain-midbrain (11.0% of all CHD), dorsal prosencephalon (10.0%) development, and abnormal cerebrospinal fluid spaces (10.5%). There was no difference in the prevalence or pattern of ECA between early (<25 weeks; 45.7%) and late (≥25 weeks; 54.3%) fetal MRI. CONCLUSIONS: ECA and SBA rates on fetal MRI are high across all types of CHD studied, and ECA as well as SBA are already present from midgestation onward.