Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 19(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914172

RESUMEN

The brain of Drosophila melanogaster is comprised of some 100,000 neurons, 127 and 80 of which are dopaminergic and serotonergic, respectively. Their activity regulates behavioral functions equivalent to those in mammals, e.g., motor activity, reward and aversion, memory formation, feeding, sexual appetite, etc. Mammalian dopaminergic and serotonergic neurons are known to be heterogeneous. They differ in their projections and in their gene expression profile. A sophisticated genetic tool box is available, which allows for targeting virtually any gene with amazing precision in Drosophila melanogaster. Similarly, Drosophila genes can be replaced by their human orthologs including disease-associated alleles. Finally, genetic manipulation can be restricted to single fly neurons. This has allowed for addressing the role of individual neurons in circuits, which determine attraction and aversion, sleep and arousal, odor preference, etc. Flies harboring mutated human orthologs provide models which can be interrogated to understand the effect of the mutant protein on cell fate and neuronal connectivity. These models are also useful for proof-of-concept studies to examine the corrective action of therapeutic strategies. Finally, experiments in Drosophila can be readily scaled up to an extent, which allows for drug screening with reasonably high throughput.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Drosophila melanogaster/fisiología , Neuronas Serotoninérgicas/fisiología , Transmisión Sináptica , Animales , Neuronas Dopaminérgicas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas Serotoninérgicas/metabolismo
2.
Neuropharmacology ; 161: 107564, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30851308

RESUMEN

The serotonin transporter (SERT) regulates serotonergic neurotransmission by retrieving released serotonin and replenishing vesicular stores. SERT is not only delivered to axons but it is also present on the neuronal soma and on dendrites. It has not been possible to restrict the distribution of SERT without affecting transporter function. Hence, the physiological role of somatodendritic SERT remains enigmatic. The SERT C-terminus harbors a conserved RI-motif, which recruits SEC24C, a cargo receptor in the coatomer protein-II coat. Failure to engage SEC24C precludes axonal enrichment of SERT. Here we introduced a point mutation into the RI-motif of human SERT causing confinement of the resulting - otherwise fully functional - hSERT-R607A on the somatodendritic membrane of primary rat dorsal raphe neurons. Transgenic expression of the corresponding Drosophila mutant dSERT-R599A led to its enrichment in the somatodendritic compartment of serotonergic neurons in the fly brain. We explored the possible physiological role of somatodendritic SERT by comparing flies harboring wild type SERT and dSERT-R599A in a behavioral paradigm for serotonin-modulated odor perception. When globally re-expressed in serotonergic neurons, wild type SERT but not dSERT-R599A restored ethanol preference. In contrast, dSERT-R599A restored ethanol preference after targeted expression in contralaterally projecting, serotonin-immunoreactive deuterocerebral (CSD) interneurons, while expression of wild type SERT caused ethanol aversion. We conclude that, in CSD neurons, (i) somatodendritic SERT supports ethanol attraction, (ii) axonal SERT specifies ethanol aversion, (iii) the effect of axonal SERT can override that of somatodendritic SERT. These observations demonstrate a distinct biological role of somatodendritic and axonal serotonin transport. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Olfato/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Línea Celular , Depresores del Sistema Nervioso Central/farmacología , Dendritas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Etanol/farmacología , Humanos , Interneuronas/efectos de los fármacos , Mutación Puntual/genética , Cultivo Primario de Células , Pliegue de Proteína , Núcleos del Rafe/citología , Núcleos del Rafe/metabolismo , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Olfato/genética
3.
Sci Rep ; 8(1): 7369, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743494

RESUMEN

It has been suggested that the dentate gyrus, particularly its new neurons generated via adult neurogenesis, is involved in memory acquisition and recall. Here, we trained rats in two types of Morris water maze tasks that are differentially associated with these two memory processes, and examined whether new neurons are differently affected by the two tasks performed during the second week of neuronal birth. Our results indicate that the task involving more opportunities to acquire new information better supports the survival of new neurons. Further, we assessed whether the two tasks differentially induce the expression of an immediate early gene, Zif268, which is known to be induced by neuronal activation. While the two tasks differentially induce Zif268 expression in the dentate gyrus, the proportions of new neurons activated were similar between the two tasks. Thus, we conclude that while the two tasks differentially activate the dentate gyrus, the task involving more opportunities for memory acquisition during the second week of the birth of new neurons better promotes the survival of the new neurons.


Asunto(s)
Conducta Animal/fisiología , Giro Dentado/citología , Memoria , Neuronas/citología , Animales , Supervivencia Celular , Giro Dentado/fisiología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación de la Expresión Génica , Aprendizaje por Laberinto/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA