Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 30(7): 951-961, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32718981

RESUMEN

Gene expression profiles in homologous tissues have been observed to be different between species, which may be due to differences between species in the gene expression program in each cell type, but may also reflect differences in cell type composition of each tissue in different species. Here, we compare expression profiles in matching primary cells in human, mouse, rat, dog, and chicken using Cap Analysis Gene Expression (CAGE) and short RNA (sRNA) sequencing data from FANTOM5. While we find that expression profiles of orthologous genes in different species are highly correlated across cell types, in each cell type many genes were differentially expressed between species. Expression of genes with products involved in transcription, RNA processing, and transcriptional regulation was more likely to be conserved, while expression of genes encoding proteins involved in intercellular communication was more likely to have diverged during evolution. Conservation of expression correlated positively with the evolutionary age of genes, suggesting that divergence in expression levels of genes critical for cell function was restricted during evolution. Motif activity analysis showed that both promoters and enhancers are activated by the same transcription factors in different species. An analysis of expression levels of mature miRNAs and of primary miRNAs identified by CAGE revealed that evolutionary old miRNAs are more likely to have conserved expression patterns than young miRNAs. We conclude that key aspects of the regulatory network are conserved, while differential expression of genes involved in cell-to-cell communication may contribute greatly to phenotypic differences between species.


Asunto(s)
Evolución Molecular , Transcriptoma , Animales , Pollos/genética , Perros , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , MicroARNs/metabolismo , Motivos de Nucleótidos , Análisis de Componente Principal , Regiones Promotoras Genéticas , Ratas , Especificidad de la Especie , Factores de Transcripción/metabolismo
2.
Genome Res ; 30(7): 1073-1081, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32079618

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes, including human diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive of over 109,000 coding and noncoding genes, as described in the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human samples. In particular, we (a) identify tissue-specific transcription profiles for distinct classes of coding and noncoding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel noncoding genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhancer lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other researchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.


Asunto(s)
Transcriptoma , Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Neoplasias/genética , Especificidad de Órganos , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo
3.
Development ; 147(3)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32014865

RESUMEN

The pluripotent epiblast gives rise to all tissues and organs in the adult body. Its differentiation starts at gastrulation, when the epiblast generates mesoderm and endoderm germ layers through epithelial-mesenchymal transition (EMT). Although gastrulation EMT coincides with loss of epiblast pluripotency, pluripotent cells in development and in vitro can adopt either mesenchymal or epithelial morphology. The relationship between epiblast cellular morphology and its pluripotency is not well understood. Here, using chicken epiblast and mammalian pluripotency stem cell (PSC) models, we show that PSCs undergo a mesenchymal-epithelial transition (MET) prior to EMT-associated pluripotency loss. Epiblast MET and its subsequent EMT are two distinct processes. The former, a partial MET, is associated with reversible initiation of pluripotency exit, whereas the latter, a full EMT, is associated with complete and irreversible pluripotency loss. We provide evidence that integrin-mediated cell-matrix interaction is a key player in pluripotency exit regulation. We propose that epiblast partial MET is an evolutionarily conserved process among all amniotic vertebrates and that epiblast pluripotency is restricted to an intermediate cellular state residing between the fully mesenchymal and fully epithelial states.


Asunto(s)
Endodermo/citología , Transición Epitelial-Mesenquimal/fisiología , Gastrulación/fisiología , Mesodermo/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Línea Celular , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis/genética
4.
Chromosome Res ; 30(1): 109-121, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142952

RESUMEN

DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site. We applied the pipeline to International Human Epigenome Consortium methylome data and selected 393 candidate transcription factor binding motifs and associated 383 TFs that are likely associated with DNA demethylation. Validation of a subset of the candidate TFs using an in vitro assay suggested that 28 of 49 TFs from various TF families had DNA-demethylation-promoting activity; TF families, such as bHLH and ETS, contained both TFs with and without the activity. The identified TFs showed large demethylated/methylated CpG ratios and their demethylated CpGs showed significant bias toward hypermethylation in original cells. Furthermore, the identified TFs promoted demethylation of distinct sets of CpGs, with slight overlap of the targeted CpGs among TF family members, which was consistent with the results of a gene ontology (GO) term analysis of the identified TFs. Gene expression analysis of the identified TFs revealed that multiple TFs from various families are specifically expressed in human cells and tissues. Together, our results suggest that a large number of TFs from various TF families are associated with cell-type-specific DNA demethylation during human cellular development.


Asunto(s)
Desmetilación del ADN , Factores de Transcripción , Animales , Sitios de Unión , ADN/metabolismo , Metilación de ADN , Genoma , Humanos , Mamíferos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nature ; 543(7644): 199-204, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241135

RESUMEN

Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.


Asunto(s)
Bases de Datos Genéticas , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Transcriptoma/genética , Células Cultivadas , Secuencia Conservada/genética , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Internet , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , Estabilidad del ARN , ARN Mensajero/genética
6.
Nucleic Acids Res ; 49(D1): D892-D898, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211864

RESUMEN

The Functional ANnoTation Of the Mammalian genome (FANTOM) Consortium has continued to provide extensive resources in the pursuit of understanding the transcriptome, and transcriptional regulation, of mammalian genomes for the last 20 years. To share these resources with the research community, the FANTOM web-interfaces and databases are being regularly updated, enhanced and expanded with new data types. In recent years, the FANTOM Consortium's efforts have been mainly focused on creating new non-coding RNA datasets and resources. The existing FANTOM5 human and mouse miRNA atlas was supplemented with rat, dog, and chicken datasets. The sixth (latest) edition of the FANTOM project was launched to assess the function of human long non-coding RNAs (lncRNAs). From its creation until 2020, FANTOM6 has contributed to the research community a large dataset generated from the knock-down of 285 lncRNAs in human dermal fibroblasts; this is followed with extensive expression profiling and cellular phenotyping. Other updates to the FANTOM resource includes the reprocessing of the miRNA and promoter atlases of human, mouse and chicken with the latest reference genome assemblies. To facilitate the use and accessibility of all above resources we further enhanced FANTOM data viewers and web interfaces. The updated FANTOM web resource is publicly available at https://fantom.gsc.riken.jp/.


Asunto(s)
Anotación de Secuencia Molecular , ARN Largo no Codificante/genética , Transcriptoma/genética , Animales , Sitios de Unión , Cromatina/metabolismo , Drosophila/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Genoma , Humanos , Metadatos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Interfaz Usuario-Computador
7.
Nucleic Acids Res ; 47(D1): D752-D758, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30407557

RESUMEN

The FANTOM web resource (http://fantom.gsc.riken.jp/) was developed to provide easy access to the data produced by the FANTOM project. It contains the most complete and comprehensive sets of actively transcribed enhancers and promoters in the human and mouse genomes. We determined the transcription activities of these regulatory elements by CAGE (Cap Analysis of Gene Expression) for both steady and dynamic cellular states in all major and some rare cell types, consecutive stages of differentiation and responses to stimuli. We have expanded the resource by employing different assays, such as RNA-seq, short RNA-seq and a paired-end protocol for CAGE (CAGEscan), to provide new angles to study the transcriptome. That yielded additional atlases of long noncoding RNAs, miRNAs and their promoters. We have also expanded the CAGE analysis to cover rat, dog, chicken, and macaque species for a limited number of cell types. The CAGE data obtained from human and mouse were reprocessed to make them available on the latest genome assemblies. Here, we report the recent updates of both data and interfaces in the FANTOM web resource.


Asunto(s)
Bases de Datos Genéticas , Genoma/genética , Internet , Transcriptoma/genética , Animales , Diferenciación Celular/genética , Pollos/genética , Perros , Regulación de la Expresión Génica/genética , Genómica/tendencias , Humanos , Ratones , MicroARNs/genética , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , Ratas , Interfaz Usuario-Computador
8.
PLoS Biol ; 15(9): e2002887, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28873399

RESUMEN

Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.


Asunto(s)
Desarrollo Embrionario , Estudio de Asociación del Genoma Completo , Sitio de Iniciación de la Transcripción , Animales , Evolución Biológica , Embrión de Pollo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
9.
Nucleic Acids Res ; 46(D1): D781-D787, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29045713

RESUMEN

Published single-cell datasets are rich resources for investigators who want to address questions not originally asked by the creators of the datasets. The single-cell datasets might be obtained by different protocols and diverse analysis strategies. The main challenge in utilizing such single-cell data is how we can make the various large-scale datasets to be comparable and reusable in a different context. To challenge this issue, we developed the single-cell centric database 'SCPortalen' (http://single-cell.clst.riken.jp/). The current version of the database covers human and mouse single-cell transcriptomics datasets that are publicly available from the INSDC sites. The original metadata was manually curated and single-cell samples were annotated with standard ontology terms. Following that, common quality assessment procedures were conducted to check the quality of the raw sequence. Furthermore, primary data processing of the raw data followed by advanced analyses and interpretation have been performed from scratch using our pipeline. In addition to the transcriptomics data, SCPortalen provides access to single-cell image files whenever available. The target users of SCPortalen are all researchers interested in specific cell types or population heterogeneity. Through the web interface of SCPortalen users are easily able to search, explore and download the single-cell datasets of their interests.


Asunto(s)
Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Ratones/genética , Análisis de la Célula Individual , Transcriptoma , Animales , Exactitud de los Datos , Curaduría de Datos , Expresión Génica , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , Interfaz Usuario-Computador , Flujo de Trabajo
10.
Nucleic Acids Res ; 45(D1): D737-D743, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27794045

RESUMEN

Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Mamíferos/genética , Programas Informáticos , Navegador Web , Animales , Biología Computacional , Humanos , Motor de Búsqueda
12.
Proc Natl Acad Sci U S A ; 109(37): 15036-41, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927403

RESUMEN

A convenient way to estimate internal body time (BT) is essential for chronotherapy and time-restricted feeding, both of which use body-time information to maximize potency and minimize toxicity during drug administration and feeding, respectively. Previously, we proposed a molecular timetable based on circadian-oscillating substances in multiple mouse organs or blood to estimate internal body time from samples taken at only a few time points. Here we applied this molecular-timetable concept to estimate and evaluate internal body time in humans. We constructed a 1.5-d reference timetable of oscillating metabolites in human blood samples with 2-h sampling frequency while simultaneously controlling for the confounding effects of activity level, light, temperature, sleep, and food intake. By using this metabolite timetable as a reference, we accurately determined internal body time within 3 h from just two anti-phase blood samples. Our minimally invasive, molecular-timetable method with human blood enables highly optimized and personalized medicine.


Asunto(s)
Relojes Biológicos/fisiología , Sangre/metabolismo , Cronoterapia/métodos , Metabolómica/métodos , Cromatografía Liquida , Ingestión de Alimentos , Humanos , Masculino , Espectrometría de Masas , Fotoperiodo , Medicina de Precisión/métodos , Sueño , Temperatura , Factores de Tiempo , Adulto Joven
13.
Nat Genet ; 38(6): 626-35, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16645617

RESUMEN

Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.


Asunto(s)
Evolución Molecular , Regiones Promotoras Genéticas , Regiones no Traducidas 3' , Animales , Secuencia de Bases , ADN , Genoma , Proteoma , TATA Box
14.
Nature ; 452(7185): 317-22, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18354476

RESUMEN

Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) beta-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor-cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.


Asunto(s)
Coturnix/fisiología , Fotoperiodo , Hipófisis/metabolismo , Hipófisis/efectos de la radiación , Reproducción/fisiología , Reproducción/efectos de la radiación , Tirotropina/metabolismo , Animales , Pollos , Coturnix/anatomía & histología , Coturnix/genética , AMP Cíclico/metabolismo , Oscuridad , Inducción Enzimática , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Genoma , Genómica , Hipotálamo/metabolismo , Hipotálamo/efectos de la radiación , Yoduro Peroxidasa/biosíntesis , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Luz , Hormona Luteinizante/metabolismo , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Hipófisis/anatomía & histología , Receptores de Tirotropina/metabolismo , Estaciones del Año , Transducción de Señal/efectos de la radiación , Testículo/crecimiento & desarrollo , Tirotropina/administración & dosificación , Tirotropina/antagonistas & inhibidores , Tirotropina/inmunología
15.
Geroscience ; 46(2): 2063-2081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37817005

RESUMEN

While some old adults stay healthy and non-frail up to late in life, others experience multimorbidity and frailty often accompanied by a pro-inflammatory state. The underlying molecular mechanisms for those differences are still obscure. Here, we used gene expression analysis to understand the molecular underpinning between non-frail and frail individuals in old age. Twenty-four adults (50% non-frail and 50% frail) from InCHIANTI study were included. Total RNA extracted from whole blood was analyzed by Cap Analysis of Gene Expression (CAGE). CAGE identified transcription start site (TSS) and active enhancer regions. We identified a set of differentially expressed (DE) TSS and enhancer between non-frail and frail and male and female participants. Several DE TSSs were annotated as lncRNA (XIST and TTTY14) and antisense RNAs (ZFX-AS1 and OVCH1 Antisense RNA 1). The promoter region chr6:366,786,54-366,787,97;+ was DE and overlapping the longevity CDKN1A gene. GWAS-LD enrichment analysis identifies overlapping LD-blocks with the DE regions with reported traits in GWAS catalog (isovolumetric relaxation time and urinary tract infection frequency). Furthermore, we used weighted gene co-expression network analysis (WGCNA) to identify changes of gene expression associated with clinical traits and identify key gene modules. We performed functional enrichment analysis of the gene modules with significant trait/module correlation. One gene module is showing a very distinct pattern in hub genes. Glycogen Phosphorylase L (PYGL) was the top ranked hub gene between non-frail and frail. We predicted transcription factor binding sites (TFBS) and motif activity. TF involved in age-related pathways (e.g., FOXO3 and MYC) shows different expression patterns between non-frail and frail participants. Expanding the study of OVCH1 Antisense RNA 1 and PYGL may help understand the mechanisms leading to loss of homeostasis that ultimately causes frailty.


Asunto(s)
Fragilidad , ARN Largo no Codificante , Humanos , Masculino , Femenino , Anciano , Anciano Frágil , Fragilidad/genética , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , ARN sin Sentido/genética
16.
Sci Rep ; 14(1): 690, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184695

RESUMEN

Despite the development of various in vitro differentiation protocols for the efficient derivation of specific cell types, human induced pluripotent stem cell (hiPSC) lines have varing ability to differentiate into specific lineages. Therefore, surrogate markers for accurately predicting the differentiation propensity of hiPSC lines may facilitate cell-based therapeutic product development and manufacture. We attempted to identify marker genes that could predict the differentiation propensity of hiPSCs into neural stem/progenitor cells (NS/PCs). Using Spearman's rank correlation coefficients, we investigated genes in the undifferentiated state, the expression levels of which were significantly correlated with the neuronal differentiation propensity of several hiPSC lines. Among genes significantly correlated with NS/PC differentiation (P < 0.01), we identified ROR2 as a novel predictive marker. ROR2 expression in hiPSCs was negatively correlated with NS/PC differentiation tendency, regardless of the differentiation method, whereas its knockdown enhanced differentiation. ROR2 regulates NS/PC differentiation, suggesting that ROR2 is functionally essential for NS/PC differentiation. Selecting cell lines with relatively low ROR2 expression facilitated identification of hiPSCs that can differentiate into NS/PCs. Cells with ROR2 knockdown showed increased efficiency of differentiation into forebrain GABAergic neurons compared to controls. These findings suggest that ROR2 is a surrogate marker for selecting hiPSC lines appropriate for NS/PC and GABAergic neuronal differentiations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Línea Celular , Comercio , Neuronas GABAérgicas , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
17.
PLoS One ; 19(5): e0295971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709794

RESUMEN

The human genome is pervasively transcribed and produces a wide variety of long non-coding RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Some specific nuclear lncRNAs have been shown to be important regulatory components acting locally. As RNA-chromatin interaction and Hi-C chromatin conformation data showed that chromatin interactions of nuclear lncRNAs are determined by the local chromatin 3D conformation, we used Hi-C data to identify potential target genes of lncRNAs. RNA-protein interaction data suggested that nuclear lncRNAs act as scaffolds to recruit regulatory proteins to target promoters and enhancers. Nuclear lncRNAs may therefore play a role in directing regulatory factors to locations spatially close to the lncRNA gene. We provide the analysis results through an interactive visualization web portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA.


Asunto(s)
Cromatina , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Anotación de Secuencia Molecular , Núcleo Celular/metabolismo , Núcleo Celular/genética , Genoma Humano , Regiones Promotoras Genéticas
18.
Development ; 137(17): 2863-74, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20667916

RESUMEN

In birds and mammals, all mesoderm cells are generated from the primitive streak. Nascent mesoderm cells contain unique dorsoventral (D/V) identities according to their relative ingression position along the streak. Molecular mechanisms controlling this initial phase of mesoderm diversification are not well understood. Using the chick model, we generated high-quality transcriptomic datasets of different streak regions and analyzed their molecular heterogeneity. Fifteen percent of expressed genes exhibit differential expression levels, as represented by two major groups (dorsal to ventral and ventral to dorsal). A complete set of transcription factors and many novel genes with strong and region-specific expression were uncovered. Core components of BMP, Wnt and FGF pathways showed little regional difference, whereas their positive and negative regulators exhibited both dorsal-to-ventral and ventral-to-dorsal gradients, suggesting that robust D/V positional information is generated by fine-tuned regulation of key signaling pathways at multiple levels. Overall, our study provides a comprehensive molecular resource for understanding mesoderm diversification in vivo and targeted mesoderm lineage differentiation in vitro.


Asunto(s)
Perfilación de la Expresión Génica , Línea Primitiva/embriología , Animales , Proteínas Aviares/genética , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Embrión de Pollo , Mapeo Cromosómico , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mesodermo/embriología , Mesodermo/metabolismo , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Línea Primitiva/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Proteínas Wnt/genética
19.
STAR Protoc ; 4(1): 102038, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853658

RESUMEN

SkewC is a single-cell RNA sequencing (scRNA-seq) data quality evaluation tool. The approach is based on determining gene body coverage, and its skewness, as a quality metric for each individual cell. SkewC distinguishes between two types of single cells: typical cells with prototypical gene body coverage profiles and skewed cells with skewed gene body coverage profiles. SkewC can be used on any scRNA-seq data as it is independent from the underlying technology used to generate the data. For complete details on the use and execution of this protocol, please refer to Abugessaisa et al. (2022).1.


Asunto(s)
Exactitud de los Datos , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula , Análisis de la Célula Individual/métodos
20.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263619

RESUMEN

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo , Análisis de Expresión Génica de una Sola Célula , Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA