Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 86(6): 770-774, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35293991

RESUMEN

Parkinson's disease is characterized by the accumulation of amyloid, which consists of α-synuclein (α-Syn). To screen compounds with amyloid aggregation inhibitory activity, an effective method for the preparation of α-Syn is a prerequisite. We established a simpler method for α-Syn preparation using freeze-thaw treatment of transformed Escherichia coli. Furthermore, we found that the high-mannose type free N-glycans could prevent α-Syn aggregation.


Asunto(s)
Vigna , alfa-Sinucleína , Amiloide , Manosa , Polisacáridos
2.
Geroscience ; 46(4): 3889-3909, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446314

RESUMEN

Healthy aging has emerged as a crucial issue with the increase in the geriatric population worldwide. Food-derived sulfur-containing amino acid ergothioneine (ERGO) is a potential dietary supplement, which exhibits various beneficial effects in experimental animals although the preventive effects of ERGO on aging and/or age-related impairments such as frailty and cognitive impairment are unclear. We investigated the effects of daily oral supplementation of ERGO dissolved in drinking water on lifespan, frailty, and cognitive impairment in male mice from 7 weeks of age to the end of their lives. Ingestion of 4 ~ 5 mg/kg/day of ERGO remarkably extended the lifespan of male mice. The longevity effect of ERGO was further supported by increase in life and non-frailty spans of Caenorhabditis elegans in the presence of ERGO. Compared with the control group, the ERGO group showed significantly lower age-related declines in weight, fat mass, and average and maximum movement velocities at 88 weeks of age. This was compatible with dramatical suppression by ERGO of the age-related increments in plasma biomarkers (BMs) such as the chemokine ligand 9, creatinine, symmetric dimethylarginine, urea, asymmetric dimethylarginine, quinolinic acid, and kynurenine. The oral intake of ERGO also rescued age-related impairments in learning and memory ability, which might be associated with suppression of the age-related decline in hippocampal neurogenesis and TDP43 protein aggregation and promotion of microglial shift to the M2 phenotype by ERGO ingestion. Ingestion of ERGO may promote longevity and healthy aging in male mice, possibly through multiple biological mechanisms.


Asunto(s)
Caenorhabditis elegans , Ergotioneína , Envejecimiento Saludable , Longevidad , Animales , Ergotioneína/farmacología , Masculino , Longevidad/efectos de los fármacos , Envejecimiento Saludable/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Ratones , Suplementos Dietéticos , Ratones Endogámicos C57BL , Fragilidad
3.
Front Plant Sci ; 11: 610124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537045

RESUMEN

During endoplasmic reticulum (ER)-associated degradation, free N-glycans (FNGs) are produced from misfolded nascent glycoproteins via the combination of the cytosolic peptide N-glycanase (cPNGase) and endo-ß-N-acetylglucosaminidase (ENGase) in the plant cytosol. The resulting high-mannose type (HMT)-FNGs, which carry one GlcNAc residue at the reducing end (GN1-FNGs), are ubiquitously found in developing plant cells. In a previous study, we found that HMT-FNGs assisted in protein folding and inhibited ß-amyloid fibril formation, suggesting a possible biofunction of FNGs involved in the protein folding system. However, whether these HMT-FNGs occur in the ER, an organelle involved in protein folding, remained unclear. On the contrary, we also reported the presence of plant complex type (PCT)-GN1-FNGs, which carry the Lewisa epitope at the non-reducing end, indicating that these FNGs had been fully processed in the Golgi apparatus. Since plant ENGase was active toward HMT-N-glycans but not PCT-N-glycans that carry ß1-2xylosyl and/or α1-3 fucosyl residue(s), these PCT-GN1-FNGs did not appear to be produced from fully processed glycoproteins that harbored PCT-N-glycans via ENGase activity. Interestingly, PCT-GN1-FNGs were found in the extracellular space, suggesting that HMT-GN1-FNGs formed in the cytosol might be transported back to the ER and processed in the Golgi apparatus through the protein secretion pathway. As the first step in elucidating the production mechanism of PCT-GN1-FNGs, we analyzed the structures of free oligosaccharides in plant microsomes and proved that HMT-FNGs (Man9-7GlcNAc1 and Man9-8GlcNAc2) could be found in microsomes, which almost consist of the ER compartments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA