Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38836779

RESUMEN

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole-body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r=0.49; P<0.001) and negatively related to resting heart rate (HR, r=-0.39; P<0.001), which was also negatively related to expression of type I muscle fibers (r=-0.41; P<0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59±6%; HR = 57±9 beats/min; SIgalvin = 1.8±0.7 units) or low percentage of type I fibers (30±6%; HR = 71±11; SIgalvin = 0.8±0.3 units; P<0.001 for all variables vs. first group). eNOS expression was: 1. higher in subjects with high type I expression; 2. almost two-fold higher in pools of type I vs. II fibers; 3. only detected in capillaries surrounding muscle fibers; and 4. linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.

2.
Am J Physiol Cell Physiol ; 324(2): C477-C487, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622074

RESUMEN

Gi-coupled protein receptor 81 (GPR81) was first identified in adipocytes as a receptor for l-lactate, which upon binding inhibits cyclicAMP (cAMP)-protein kinase (PKA)-cAMP-response element binding (CREB) signaling. Moreover, incubation of myotubes with lactate augments expression of GPR81 and genes and proteins involved in lactate- and energy metabolism. However, characterization of GPR81 expression and investigation of related signaling in human skeletal muscle under conditions of elevated circulating lactate levels are lacking. Muscle biopsies were obtained from healthy men and women at rest, after leg extension exercise, with or without venous infusion of sodium lactate, and 90 and 180 min after exercise (8 men and 8 women). Analyses included protein and mRNA levels of GPR81, as well as GPR81-dependent signaling molecules. GPR81 expression was 2.5-fold higher in type II glycolytic compared with type I oxidative muscle fibers, and the expression was inversely related to the percentage of type I muscle fibers. Muscle from women expressed about 25% more GPR81 protein than from men. Global PKA activity increased by 5%-8% after exercise, with no differences between trials. CREBS133 phosphorylation was reduced by 30% after exercise and remained repressed during the entire trials, with no influence of the lactate infusion. The mRNA expression of vascular endothelial growth factor (VEGF) and peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were increased by 2.5-6-fold during recovery, and that of lactate dehydrogenase reduced by 15% with no differences between trials for any gene at any time point. The high expression of GPR81-protein in type II fibers suggests that lactate functions as an autocrine signaling molecule in muscle; however, lactate does not appear to regulate CREB signaling during exercise.


Asunto(s)
Comunicación Autocrina , Ácido Láctico , Femenino , Humanos , Masculino , Ácido Láctico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791323

RESUMEN

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Asunto(s)
Resistencia a la Insulina , Inanición , Humanos , Ácidos Grasos no Esterificados/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Inanición/metabolismo , Lípidos , Metabolismo de los Lípidos , Oxidación-Reducción
4.
Eur J Appl Physiol ; 122(8): 1751-1772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35355125

RESUMEN

Glycogen is a branched, glucose polymer and the storage form of glucose in cells. Glycogen has traditionally been viewed as a key substrate for muscle ATP production during conditions of high energy demand and considered to be limiting for work capacity and force generation under defined conditions. Glycogenolysis is catalyzed by phosphorylase, while glycogenesis is catalyzed by glycogen synthase. For many years, it was believed that a primer was required for de novo glycogen synthesis and the protein considered responsible for this process was ultimately discovered and named glycogenin. However, the subsequent observation of glycogen storage in the absence of functional glycogenin raises questions about the true role of the protein. In resting muscle, phosphorylase is generally considered to be present in two forms: non-phosphorylated and inactive (phosphorylase b) and phosphorylated and constitutively active (phosphorylase a). Initially, it was believed that activation of phosphorylase during intense muscle contraction was primarily accounted for by phosphorylation of phosphorylase b (activated by increases in AMP) to a, and that glycogen synthesis during recovery from exercise occurred solely through mechanisms controlled by glucose transport and glycogen synthase. However, it now appears that these views require modifications. Moreover, the traditional roles of glycogen in muscle function have been extended in recent years and in some instances, the original concepts have undergone revision. Thus, despite the extensive amount of knowledge accrued during the past 100 years, several critical questions remain regarding the regulation of glycogen metabolism and its role in living muscle.


Asunto(s)
Glucogenólisis , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa/metabolismo , Humanos , Músculo Esquelético/metabolismo , Fosforilasa b/metabolismo , Fosforilasas/metabolismo
5.
Am J Physiol Endocrinol Metab ; 320(4): E691-E701, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33554777

RESUMEN

Phosphorylase is one of the most carefully studied proteins in history, but knowledge of its regulation during intense muscle contraction is incomplete. Tyrosine nitration of purified preparations of skeletal muscle phosphorylase results in inactivation of the enzyme and this is prevented by antioxidants. Whether an altered redox state affects phosphorylase activity and glycogenolysis in contracting muscle is not known. Here, we investigate the role of the redox state in control of phosphorylase and glycogenolysis in isolated mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscle preparations during repeated contractions. Exposure of crude muscle extracts to H2O2 had little effect on phosphorylase activity. However, exposure of extracts to peroxynitrite (ONOO-), a nitrating/oxidizing agent, resulted in complete inactivation of phosphorylase (half-maximal inhibition at ∼200 µM ONOO-), which was fully reversed by the presence of an ONOO- scavanger, dithiothreitol (DTT). Incubation of isolated muscles with ONOO- resulted in nitration of phosphorylase and marked inhibition of glycogenolysis during repeated contractions. ONOO- also resulted in large decreases in high-energy phosphates (ATP and phosphocreatine) in the rested state and following repeated contractions. These metabolic changes were associated with decreased force production during repeated contractions (to ∼60% of control). In contrast, repeated contractions did not result in nitration of phosphorylase, nor did DTT or the general antioxidant N-acetylcysteine alter glycogenolysis during repeated contractions. These findings demonstrate that ONOO- inhibits phosphorylase and glycogenolysis in living muscle under extreme conditions. However, nitration does not play a significant role in control of phosphorylase and glycogenolysis during repeated contractions.NEW & NOTEWORTHY Here we show that exogenous peroxynitrite results in nitration of phosphorylase as well as inhibition of glycogenolysis in isolated intact mouse skeletal muscle during short-term repeated contractions. However, repeated contractions in the absence of exogenous peroxynitrite do not result in nitration of phosphorylase or affect glycogenolysis, nor does the addition of antioxidants alter glycogenolysis during repeated contractions. Thus phosphorylase is not subject to redox control during repeated contractions.


Asunto(s)
Glucogenólisis , Músculo Esquelético/metabolismo , Estrés Nitrosativo/fisiología , Fosforilasas/metabolismo , Animales , Glucógeno/metabolismo , Glucogenólisis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Nitratos/metabolismo , Nitratos/farmacología , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacología , Fosforilasas/efectos de los fármacos
6.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922487

RESUMEN

Weak electromagnetic fields (WEF) alter Ca2+ handling in skeletal muscle myotubes. Owing to the involvement of Ca2+ in muscle development, we investigated whether WEF affects fusion of myoblasts in culture. Rat primary myoblast cultures were exposed to WEF (1.75 µT, 16 Hz) for up to six days. Under control conditions, cell fusion and creatine kinase (CK) activity increased in parallel and peaked at 4-6 days. WEF enhanced the extent of fusion after one and two days (by ~40%) vs. control, but not thereafter. Exposure to WEF also enhanced CK activity after two days (almost four-fold), but not afterwards. Incorporation of 3H-thymidine into DNA was enhanced by one-day exposure to WEF (~40%), indicating increased cell replication. Using the potentiometric fluorescent dye di-8-ANEPPS, we found that exposure of cells to 150 mM KCl resulted in depolarization of the cell membrane. However, prior exposure of cells to WEF for one day followed by addition of KCl resulted in hyperpolarization of the cell membrane. Acute exposure of cells to WEF also resulted in hyperpolarization of the cell membrane. Twenty-four hour incubation of myoblasts with gambogic acid, an inhibitor of the inward rectifying K+ channel 2.1 (Kir2.1), did not affect cell fusion, WEF-mediated acceleration of fusion or hyperpolarization. These data demonstrate that WEF accelerates fusion of myoblasts, resulting in myotube formation. The WEF effect is associated with hyperpolarization but WEF does not appear to mediate its effects on fusion by activating Kir2.1 channels.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Campos Electromagnéticos , Músculo Esquelético/fisiología , Mioblastos/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Diferenciación Celular , Fusión Celular , Células Cultivadas , Potenciales de la Membrana , Músculo Esquelético/citología , Mioblastos/citología , Ratas , Ratas Sprague-Dawley
7.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188137

RESUMEN

UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.


Asunto(s)
Galactosa/biosíntesis , Glicoconjugados/biosíntesis , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Animales , Encefalopatías/metabolismo , Línea Celular , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Cricetinae , Medios de Cultivo/química , Glicoesfingolípidos , Glicosilación , Humanos , Cinética , Pulmón , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Uridina Difosfato Glucosa/biosíntesis
8.
Pflugers Arch ; 471(10): 1305-1316, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451903

RESUMEN

Fight or flight is a biologic phenomenon that involves activation of ß-adrenoceptors in skeletal muscle. However, how force generation is enhanced through adrenergic activation in different muscle types is not fully understood. We studied the effects of isoproterenol (ISO, ß-receptor agonist) on force generation and energy metabolism in isolated mouse soleus (SOL, oxidative) and extensor digitorum longus (EDL, glycolytic) muscles. Muscles were stimulated with isometric tetanic contractions and analyzed for metabolites and phosphorylase activity. Under conditions of maximal force production, ISO enhanced force generation markedly more in SOL (22%) than in EDL (8%). Similarly, during a prolonged tetanic contraction (30 s for SOL and 10 s for EDL), ISO-enhanced the force × time integral more in SOL (25%) than in EDL (3%). ISO induced marked activation of phosphorylase in both muscles in the basal state, which was associated with glycogenolysis (less in SOL than in EDL), and in EDL only, a significant decrease (16%) in inorganic phosphate (Pi). ATP turnover during sustained contractions (1 s EDL, 5 s SOL) was not affected by ISO in EDL, but essentially doubled in SOL. Under conditions of maximal stimulation, ISO has a minor effect on force generation in EDL that is associated with a decrease in Pi, whereas ISO has a marked effect on force generation in SOL that is associated with an increase in ATP turnover. Thus, phosphorylase functions as a phosphate trap in ISO-mediated force enhancement in EDL and as a catalyzer of ATP supply in SOL.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Glucólisis , Isoproterenol/farmacología , Contracción Muscular , Fibras Musculares Esqueléticas/efectos de los fármacos , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología
9.
Am J Physiol Cell Physiol ; 315(5): C706-C713, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156860

RESUMEN

The effects of heating on glycogen synthesis (incorporation of [14C]glucose into glycogen) and accumulation after intense repeated contractions were investigated. Isolated mouse extensor digitorum longus muscle (type II) was stimulated electrically to perform intense tetanic contractions at 25°C. After 120 min recovery at 25°C, glycogen accumulated to almost 80% of basal, whereas after recovery at 35°C, glycogen remained low (~25% of basal). Glycogen synthesis averaged 0.97 ± 0.07 µmol·30 min-1·g wet wt-1 during recovery at 25°C and 1.48 ± 0.08 during recovery at 35°C ( P < 0.001). There were no differences in phosphorylase and glycogen synthase total activities nor in phosphorylase fractional activity, whereas glycogen synthase fractional activity was increased by ~50% after recovery at 35°C vs. 25°C. Inorganic phosphate (Pi, substrate for phosphorylase) was markedly increased (~300% of basal) following contraction but returned to control levels after 120 min recovery at 25°C. In contrast, Pi remained elevated after recovery at 35°C (>2-fold higher than recovery at 25°C). Estimates of glycogen breakdown indicated that phosphorylase activity (either via inhibition at 25°C or activation at 35°C) was responsible for ~60% of glycogen accumulation during recovery at 25°C and ~45% during recovery at 35°C. These data demonstrate that despite the enhancing effect of heating on glycogen synthesis during recovery from intense contractions, glycogen accumulation is inhibited owing to Pi-mediated activation of phosphorylase. Thus phosphorylase can play a quantitatively important role in glycogen biogenesis during recovery from repeated contractions in isolated type II muscle.


Asunto(s)
Glucógeno Sintasa/genética , Glucógeno/metabolismo , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Animales , Glucógeno/biosíntesis , Glucógeno Sintasa/metabolismo , Calefacción , Ratones , Contracción Muscular/fisiología , Músculo Esquelético/efectos de la radiación , Técnicas de Cultivo de Órganos , Fosfatos/metabolismo , Fosforilasas/genética , Fosforilasas/metabolismo
10.
FASEB J ; 31(11): 4809-4820, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28716970

RESUMEN

Increased production of reactive oxygen/nitrogen species (ROS) and impaired cellular Ca2+ handling are implicated in the prolonged low-frequency force depression (PLFFD) observed in skeletal muscle after both metabolically and mechanically demanding exercise. Metabolically demanding high-intensity exercise can induce PLFFD accompanied by ROS-dependent fragmentation of the sarcoplasmic reticulum Ca2+ release channels, the ryanodine receptor 1s (RyR1s). We tested whether similar changes occur after mechanically demanding eccentric contractions. Human subjects performed 100 repeated drop jumps, which require eccentric knee extensor contractions upon landing. This exercise caused a major PLFFD, such that maximum voluntary and electrically evoked forces did not recover within 24 h. Drop jumps induced only minor signs of increased ROS, and RyR1 fragmentation was observed in only 3 of 7 elderly subjects. Also, isolated mouse muscle preparations exposed to drop-jump-mimicking eccentric contractions showed neither signs of increased ROS nor RyR1 fragmentation. Still, the free cytosolic [Ca2+] during tetanic contractions was decreased by ∼15% 1 h after contractions, which can explain the exaggerated force decrease at low-stimulation frequencies but not the major frequency-independent force depression. In conclusion, PLFFD caused by mechanically demanding eccentric contractions does not involve any major increase in ROS or RyR1 fragmentation.-Kamandulis, S., de Souza Leite, F., Hernandez, A., Katz, A., Brazaitis, M., Bruton, J. D., Venckunas, T., Masiulis, N., Mickeviciene, D., Eimantas, N., Subocius, A., Rassier, D. E., Skurvydas, A., Ivarsson, N., Westerblad, H. Prolonged force depression after mechanically demanding contractions is largely independent of Ca2+ and reactive oxygen species.


Asunto(s)
Calcio/metabolismo , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Especies Reactivas de Oxígeno/metabolismo , Adulto , Animales , Humanos , Masculino , Ratones , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
11.
J Physiol ; 594(11): 2787-94, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26791627

RESUMEN

Glucose derived from extracellular sources serves as an energy source in virtually all eukaryotic cells, including skeletal muscle. Its contribution to energy turnover increases with exercise intensity up to moderately heavy workloads. However, at very high workloads, the contribution of extracellular glucose to energy turnover is negligible, despite the high rate of glucose transport. Reactive oxygen species (ROS) are involved in the stimulation of glucose transport in isolated skeletal muscle preparations during intense repeated contractions. Consistent with this observation, heavy exercise is associated with significant production of ROS. However, during more mild to moderate stimulation or exercise conditions (in vitro, in situ and in vivo) antioxidants do not affect glucose transport. It is noteworthy that the production of ROS is limited or not observed under these conditions and that the concentration of the antioxidant used was extremely low. The results to date suggest that ROS involvement in activation of glucose transport occurs primarily during intense short-term exercise and that other mechanisms are involved during mild to moderate exercise. What remains puzzling is why ROS-mediated activation of glucose transport would occur under conditions where glucose transport is highest and utilization (i.e. phosphorylation of glucose by hexokinase) is low. Possibly ROS production is involved in priming glucose transport during heavy exercise to accelerate glycogen biogenesis during the initial recovery period after exercise, as well as altering other aspects of intracellular metabolism.


Asunto(s)
Ejercicio Físico/fisiología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Transporte Biológico/fisiología , Humanos
12.
Pflugers Arch ; 468(8): 1459-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27194243

RESUMEN

Weak electromagnetic fields (WEF) enhance Ca(2+) entry into cells via voltage-gated Ca(2+) channels and affect various aspects of metabolism, structure, and function. However, little information is available on the effect of WEF on skeletal muscle, which depends primarily on intracellular Ca(2+) stores for function and metabolism. Here, we examine the effects of 30 min exposure of rat primary myotube cultures to WEF (1.75 µT, 16 Hz) on Ca(2+) handling and creatine kinase (CK) release. Free myoplasmic Ca(2+) concentration ([Ca(2+) i]) was measured with the ratiometric dye indo-1. WEF did not affect basal [Ca(2+)]i but decreased the twitch [Ca(2+)]i transient in a time-dependent manner, and the twitch amplitude was decreased to ∼30 % after 30 min. WEF completely abolished the increase in [Ca(2+)]i induced by potassium chloride (∼60 mM) but had no effect on the increase induced by caffeine (∼6 mM). Hypoxia (2 h exposure to 100 % argon) resulted in a marked loss of CK into the medium (400 % of normoxic value), as well as a rapid (within 20 min) and sustained increase in basal [Ca(2+)]i (∼20 % above baseline). However, during exposure to WEF, basal [Ca(2+)]i remained constant during the initial 60 min of hypoxia and, thereafter, increased to levels similar to those observed in the absence of WEF. Finally, WEF blocked about 80 % of hypoxia-mediated CK release (P < 0.05). These data demonstrate that WEF inhibits increases in [Ca(2+)]i by interfering with muscle excitation and protects against muscle damage induced by hypoxia. Thus, WEF may have therapeutic/protective effects on skeletal muscle.


Asunto(s)
Calcio/metabolismo , Hipoxia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Creatina Quinasa/metabolismo , Campos Electromagnéticos , Indoles/metabolismo , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Am J Physiol Endocrinol Metab ; 309(4): E418-27, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26126683

RESUMEN

Inflammation and impaired mitochondrial oxidative phosphorylation are considered key players in the development of several metabolic disorders, including diabetes. We have previously shown inflammation and mitochondrial dysfunction in the hypothalamus of an animal model for anorexia, the anx/anx mouse. Moreover, increased incidence of eating disorders, e.g., anorexia nervosa, has been observed in diabetic individuals. In the present investigation we evaluated whether impaired mitochondrial phosphorylation and inflammation also occur in endocrine pancreas of anorectic mice, and if glucose homeostasis is disturbed. We show that anx/anx mice exhibit marked glucose intolerance associated with reduced insulin release following an intraperitoneal injection of glucose. In contrast, insulin release from isolated anx/anx islets is increased after stimulation with glucose or KCl. In isolated anx/anx islets there is a strong downregulation of the mitochondrial complex I (CI) assembly factor, NADH dehydrogenase (ubiquinone) 1α subcomplex, assembly factor 1 (Ndufaf1), and a reduced CI activity. In addition, we show elevated concentrations of free fatty acids (FFAs) in anx/anx serum and increased macrophage infiltration (indicative of inflammation) in anx/anx islets. However, isolated islets from anx/anx mice cultured in the absence of FFAs do not exhibit increased inflammation. We conclude that the phenotype of the endocrine pancreas of the anx/anx mouse is characterized by increased levels of circulating FFAs, as well as inflammation, which can inhibit insulin secretion in vivo. The anx/anx mouse may represent a useful tool for studying molecular mechanisms underlying the association between diabetes and eating disorders.


Asunto(s)
Anorexia/fisiopatología , Intolerancia a la Glucosa/fisiopatología , Células Secretoras de Insulina/fisiología , Animales , Anorexia/complicaciones , Anorexia/metabolismo , Anorexia/patología , Glucemia/metabolismo , Recuento de Células , Células Cultivadas , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamaño de los Órganos , Páncreas/patología
14.
Pflugers Arch ; 466(3): 577-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23912895

RESUMEN

The effects of the general antioxidant N-acetylcysteine (NAC) on muscle function and metabolism were examined. Isolated paired mouse extensor digitorum longus muscles were studied in the absence or presence of 20 mM NAC. Muscles were electrically stimulated to perform 100 isometric tetanic contractions (300 ms duration) at frequencies resulting in ∼85% of maximal force (70-150 Hz at 25-40 °C). NAC did not significantly affect peak force in the unfatigued state at any temperature but significantly slowed tetanic force development in a temperature-dependent fashion (e.g., time to 50% of peak tension averaged 35 ± 2 ms [control] and 37 ± 1 ms [NAC] at 25 °C vs. 21 ± 1 ms [control] and 52 ± 6 ms [NAC, P < 0.01] at 40 °C). During repeated contractions, NAC maximally enhanced peak force by the fifth tetanus at all temperatures (by ∼30%). Thereafter, the effect of NAC disappeared rapidly at high temperatures (35-40 °C) and more slowly at the lower temperatures (25-30 °C). At all temperatures, the enhancing effect of NAC on peak force was associated with a slowing of relaxation. NAC did not significantly affect myosin light chain phosphorylation at rest or after five contractions (∼50% increase vs. rest). After five tetani, lactate and inorganic phosphate increased about 20-fold and 2-fold, respectively, both in control and NAC-treated muscles. Interestingly, after five tetani, the increase in glucose 6-P was ∼2-fold greater, whereas the increase in malate was inhibited by ∼75% with NAC vs. control, illustrating the metabolic effects of NAC. NAC slightly decreased the maximum shortening velocity in early fatigue (five to seven repeated tetani). These data demonstrate that the antioxidant NAC transiently enhances muscle force generation by a mechanism that is independent of changes in myosin light chain phosphorylation and inorganic phosphate. The slowing of relaxation suggests that NAC enhances isometric force by facilitating fusion (i.e., delaying force decline between pulses). The initial slowing of tension development and subsequent slowing of relaxation suggest that NAC would result in impaired performance during a high-intensity dynamic exercise.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Calor , Contracción Isométrica , Músculo Esquelético/efectos de los fármacos , Animales , Femenino , Ácido Láctico/metabolismo , Malatos/metabolismo , Ratones , Ratones Endogámicos C57BL , Relajación Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Cadenas Ligeras de Miosina/metabolismo , Fosfatos/metabolismo , Fosforilación
15.
Mamm Genome ; 25(9-10): 464-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24777203

RESUMEN

Repeated bouts of physical exercise, i.e., training, induce mitochondrial biogenesis and result in improved physical performance and attenuation of glycogen breakdown during submaximal exercise. It has been suggested that as a consequence of the increased mitochondrial volume, a smaller degree of metabolic stress (e.g., smaller increases in ADP and Pi) is required to maintain mitochondrial respiration in the trained state during exercise at the same absolute intensity. The lower degree of Pi accumulation is believed to account for the diminished glycogen breakdown, since Pi is a substrate for glycogen phosphorylase, the rate-limiting enzyme for glycogenolysis. However, in this review, we present an alternative explanation for the diminished glycogen breakdown. Thus, the lower degree of metabolic stress after training is also associated with smaller increases in AMP (free concentration during contraction at specific intracellular sites) and this results in less activation of phosphorylase b (the non-phosphorylated form of phosphorylase), resulting in diminished glycogen breakdown. Concomitantly, the smaller accumulation of Pi, which interferes with cross-bridge function and intracellular Ca(2+) handling, contributes to the increased fatigue resistance. The delay in glycogen depletion also contributes to enhanced performance during prolonged exercise by functioning as an energy reserve.


Asunto(s)
Ejercicio Físico , Glucógeno/metabolismo , Glucogenólisis , Músculo Esquelético/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Creatina Quinasa/genética , Creatina Quinasa/metabolismo , Activación Enzimática , Eliminación de Gen , Humanos , Mitocondrias Musculares/metabolismo , Recambio Mitocondrial , Contracción Muscular , Fosforilasas/metabolismo , Condicionamiento Físico Animal
17.
Function (Oxf) ; 5(3): zqae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706964

RESUMEN

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ejercicio Físico , Músculo Esquelético , Plasticidad Neuronal , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/sangre , Ejercicio Físico/fisiología , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Precursores de Proteínas/metabolismo
18.
Am J Physiol Endocrinol Metab ; 304(4): E436-43, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23269410

RESUMEN

Within 2-3 days of starvation, pronounced insulin resistance develops, possibly mediated by increased lipid load. Here, we show that one exercise bout increases mitochondrial fatty acid (FA) oxidation and reverses starvation-induced insulin resistance. Nine healthy subjects underwent 75-h starvation on two occasions: with no exercise (NE) or with one exercise session at the end of the starvation period (EX). Muscle biopsies were analyzed for mitochondrial function, contents of glycogen, and phosphorylation of regulatory proteins. Glucose tolerance and insulin sensitivity, measured with an intravenous glucose tolerance test (IVGTT), were impaired after starvation, but in EX the response was attenuated or abolished. Glycogen stores were reduced, and plasma FA was increased in both conditions, with a more pronounced effect in EX. After starvation, mitochondrial respiration decreased with complex I substrate (NE and EX), but in EX there was an increased respiration with complex I + II substrate. EX altered regulatory proteins associated with increases in glucose disposal (decreased phosphorylation of glycogen synthase), glucose transport (increased phosphorylation of Akt substrate of 160 kDa), and FA oxidation (increased phosphorylation of acetyl-CoA carboxylase). In conclusion, exercise reversed starvation-induced insulin resistance and was accompanied by reduced glycogen stores, increased lipid oxidation capacity, and activation of signaling proteins involved in glucose transport and FA metabolism.


Asunto(s)
Restricción Calórica/efectos adversos , Resistencia a la Insulina , Actividad Motora , Músculo Cuádriceps/metabolismo , Adulto , Biopsia con Aguja , Estudios Cruzados , Complejo I de Transporte de Electrón/metabolismo , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Femenino , Glucógeno/metabolismo , Humanos , Masculino , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Consumo de Oxígeno , Músculo Cuádriceps/enzimología , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
19.
Sports Med Health Sci ; 5(1): 29-33, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36994178

RESUMEN

Initially it was believed that phosphorylase was responsible for both glycogen breakdown and synthesis in the living cell. The discovery of glycogen synthase and McArdle's disease (lack of phosphorylase activity), together with the high Pi/glucose 1-P ratio in skeletal muscle, demonstrated that glycogen synthesis could not be attributed to reversal of the phosphorylase reaction. Rather, glycogen synthesis was attributable solely to the activity of glycogen synthase, subsequent to the transport of glucose into the cell. However, the well-established observation that phosphorylase was inactivated (i.e., dephosphorylated) during the initial recovery period after prior exercise, when the rate of glycogen accumulation is highest and independent of insulin, suggested that phosphorylase could play an active role in glycogen accumulation. But the quantitative contribution of phosphorylase inactivation was not established until recently, when studying isolated murine muscle preparations during recovery from repeated contractions at temperatures ranging from 25 to 35 °C. Thus, in both slow-twitch, oxidative and fast-twitch, glycolytic muscles, inactivation of phosphorylase accounted for 45%-75% of glycogen accumulation during the initial hours of recovery following repeated contractions. Such data indicate that phosphorylase inactivation may be the most important mechanism for glycogen accumulation under defined conditions. These results support the initial belief that phosphorylase plays a quantitative role in glycogen formation in the living cell. However, the mechanism is not via activation of phosphorylase, but rather via inactivation of the enzyme.

20.
Acta Physiol (Oxf) ; 238(4): e13972, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017615

RESUMEN

AIM: The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS: Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS: Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION: Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.


Asunto(s)
Glucosa , Resistencia a la Insulina , Humanos , Glucosa/metabolismo , Glucemia/metabolismo , Ejercicio Físico/fisiología , Insulina/metabolismo , Atletas , Resistencia Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA