Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rep Prog Phys ; 79(12): 124201, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27775925

RESUMEN

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

2.
Phys Rev Lett ; 110(21): 211302, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745856

RESUMEN

We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

3.
Phys Rev Lett ; 106(6): 061801, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21405458

RESUMEN

We describe renormalizable supersymmetric four-dimensional theories which lead to gaugino mediation and various generalizations thereof. Even though these models are strongly coupled, we can demonstrate the parametric suppression of soft scalar masses via Seiberg duality. We show that our models have a parameter which continuously interpolates between suppressed soft scalar masses and their conventional gauge mediated contribution. The main physical effect which we utilize is the general relation between massive deformations in one frame and the Higgs mechanism in the dual frame. Some compelling and relatively unexplored phenomenological scenarios arise naturally in this framework. We offer preliminary comments on various aspects of the phenomenology and outline several of the outstanding open problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA