Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 15(10): e1008068, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31648236

RESUMEN

Ebola virus (EBOV) infections are characterized by a pronounced lymphopenia that is highly correlative with fatalities. However, the mechanisms leading to T-cell depletion remain largely unknown. Here, we demonstrate that both viral mRNAs and antigens are detectable in CD4+ T cells despite the absence of productive infection. A protein phosphatase 1 inhibitor, 1E7-03, and siRNA-mediated suppression of viral antigens were used to demonstrate de novo synthesis of viral RNAs and antigens in CD4+ T cells, respectively. Cell-to-cell fusion of permissive Huh7 cells with non-permissive Jurkat T cells impaired productive EBOV infection suggesting the presence of a cellular restriction factor. We determined that viral transcription is partially impaired in the fusion T cells. Lastly, we demonstrate that exposure of T cells to EBOV resulted in autophagy through activation of ER-stress related pathways. These data indicate that exposure of T cells to EBOV results in an abortive infection, which likely contributes to the lymphopenia observed during EBOV infections.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Linfopenia/inmunología , Replicación Viral/fisiología , Animales , Antígenos Virales/biosíntesis , Antígenos Virales/genética , Autofagia/fisiología , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Chlorocebus aethiops , Estrés del Retículo Endoplásmico/fisiología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Indoles/farmacología , Células Jurkat , Proteína Fosfatasa 1/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/biosíntesis , ARN Viral/genética , Factores de Transcripción/metabolismo , Urea/análogos & derivados , Urea/farmacología , Células Vero , Proteínas Virales/metabolismo
2.
PLoS Pathog ; 13(5): e1006397, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28542576

RESUMEN

Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/fisiopatología , Proteínas del Envoltorio Viral/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Muerte Celular , Células Cultivadas , Ebolavirus/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteínas del Envoltorio Viral/genética
3.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331091

RESUMEN

Ebola virus (EBOV) and Reston virus (RESTV) are members of the Ebolavirus genus which greatly differ in their pathogenicity. While EBOV causes a severe disease in humans characterized by a dysregulated inflammatory response and elevated cytokine and chemokine production, there are no reported disease-associated human cases of RESTV infection, suggesting that RESTV is nonpathogenic for humans. The underlying mechanisms determining the pathogenicity of different ebolavirus species are not yet known. In this study, we dissected the host response to EBOV and RESTV infection in primary human monocyte-derived macrophages (MDMs). As expected, EBOV infection led to a profound proinflammatory response, including strong induction of type I and type III interferons (IFNs). In contrast, RESTV-infected macrophages remained surprisingly silent. Early activation of IFN regulatory factor 3 (IRF3) and NF-κB was observed in EBOV-infected, but not in RESTV-infected, MDMs. In concordance with previous results, MDMs treated with inactivated EBOV and Ebola virus-like particles (VLPs) induced NF-κB activation mediated by Toll-like receptor 4 (TLR4) in a glycoprotein (GP)-dependent manner. This was not the case in cells exposed to live RESTV, inactivated RESTV, or VLPs containing RESTV GP, indicating that RESTV GP does not trigger TLR4 signaling. Our results suggest that the lack of immune activation in RESTV-infected MDMs contributes to lower pathogenicity by preventing the cytokine storm observed in EBOV infection. We further demonstrate that inhibition of TLR4 signaling abolishes EBOV GP-mediated NF-κB activation. This finding indicates that limiting the excessive TLR4-mediated proinflammatory response in EBOV infection should be considered as a potential supportive treatment option for EBOV disease.IMPORTANCE Emerging infectious diseases are a major public health concern, as exemplified by the recent devastating Ebola virus (EBOV) outbreak. Different ebolavirus species are associated with widely varying pathogenicity in humans, ranging from asymptomatic infections for Reston virus (RESTV) to severe disease with fatal outcomes for EBOV. In this comparative study of EBOV- and RESTV-infected human macrophages, we identified key differences in host cell responses. Consistent with previous data, EBOV infection is associated with a proinflammatory signature triggered by the surface glycoprotein (GP), which can be inhibited by blocking TLR4 signaling. In contrast, infection with RESTV failed to stimulate a strong host response in infected macrophages due to the inability of RESTV GP to stimulate TLR4. We propose that disparate proinflammatory host signatures contribute to the differences in pathogenicity reported for ebolavirus species and suggest that proinflammatory pathways represent an intriguing target for the development of novel therapeutics.


Asunto(s)
Ebolavirus/inmunología , Ebolavirus/patogenicidad , Interacciones Huésped-Patógeno , Macrófagos/virología , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular , Quimiocinas/inmunología , Quimiocinas/metabolismo , Chlorocebus aethiops , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Ebolavirus/fisiología , Perfilación de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Interferones/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Células Vero , Virulencia
4.
PLoS Genet ; 11(10): e1005504, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26452100

RESUMEN

New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.


Asunto(s)
Interacciones Huésped-Patógeno , Inflamación/genética , Síndrome Respiratorio Agudo Grave/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inflamación/patología , Inflamación/virología , Ratones , Fenotipo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Replicación Viral/genética
5.
J Gen Virol ; 98(10): 2425-2437, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28884664

RESUMEN

A few studies have highlighted the importance of the respiratory microbiome in modulating the frequency and outcome of viral respiratory infections. However, there are insufficient data on the use of microbial signatures as prognostic biomarkers to predict respiratory disease outcomes. In this study, we aimed to evaluate whether specific bacterial community compositions in the nasopharynx of children at the time of hospitalization are associated with different influenza clinical outcomes. We utilized retrospective nasopharyngeal (NP) samples (n=36) collected at the time of hospital arrival from children who were infected with influenza virus and had been symptomatic for less than 2 days. Based on their clinical course, children were classified into two groups: patients with mild influenza, and patients with severe respiratory or neurological complications. We implemented custom 16S rRNA gene sequencing, metagenomic sequencing and computational analysis workflows to classify the bacteria present in NP specimens at the species level. We found that increased bacterial diversity in the nasopharynx of children was strongly associated with influenza severity. In addition, patients with severe influenza had decreased relative abundance of Staphylococcus aureus and increased abundance of Prevotella (including P. melaninogenica), Streptobacillus, Porphyromonas, Granulicatella (including G. elegans), Veillonella (including V. dispar), Fusobacterium and Haemophilus in their nasopharynx. This pilot study provides proof-of-concept data for the use of microbial signatures as prognostic biomarkers of influenza outcomes. Further large prospective cohort studies are needed to refine and validate the performance of such microbial signatures in clinical settings.


Asunto(s)
Disbiosis , Gripe Humana/complicaciones , Gripe Humana/diagnóstico , Microbiota , Nasofaringe/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Niño , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Humanos , Filogenia , Pronóstico , ARN Ribosómico 16S/genética , Estudios Retrospectivos , Análisis de Secuencia de ADN
6.
Semin Immunol ; 25(3): 228-39, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23218769

RESUMEN

Influenza virus research has recently undergone a shift from a virus-centric perspective to one that embraces the full spectrum of virus-host interactions and cellular signaling events that determine disease outcome. This change has been brought about by the increasing use and expanding scope of high-throughput molecular profiling and computational biology, which together fuel discovery in systems biology. In this review, we show how these approaches have revealed an uncontrolled inflammatory response as a contributor to the extreme virulence of the 1918 pandemic and avian H5N1 viruses, and how this response differs from that induced by the 2009 H1N1 viruses responsible for the most recent influenza pandemic. We also discuss how new animal models, such as the Collaborative Cross mouse systems genetics platform, are key to the necessary systematic investigation of the impact of host genetics on infection outcome, how genome-wide RNAi screens have identified hundreds of cellular factors involved in viral replication, and how systems biology approaches are making possible the rational design of new drugs and vaccines against an ever-evolving respiratory virus.


Asunto(s)
Interacciones Huésped-Patógeno , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Biología de Sistemas/métodos , Animales , Biología Computacional , Modelos Animales de Enfermedad , Interacción Gen-Ambiente , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunidad/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/genética , Ratones , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/genética , Pandemias , Virulencia
7.
Nucleic Acids Res ; 43(Database issue): D737-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392405

RESUMEN

The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/) aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of ∼ 20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same ∼ 15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Primates/genética , Análisis de Secuencia de ARN , Animales , Internet , Macaca , Anotación de Secuencia Molecular , Especificidad de Órganos , Estándares de Referencia , Alineación de Secuencia/normas
8.
J Virol ; 89(5): 2543-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520505

RESUMEN

UNLABELLED: To identify host factors associated with arenavirus virulence, we used a cynomolgus macaque model to evaluate the pathogenesis of Lujo virus (LUJV), a recently emerged arenavirus that caused an outbreak of severe viral hemorrhagic fever in southern Africa. In contrast to human cases, LUJV caused mild, nonlethal illness in macaques. We then compared this to contrasting clinical outcomes during arenavirus infection, specifically to samples obtained from macaques infected with three highly pathogenic lines of Lassa virus (LASV), the causative agent of Lassa fever (LF). We assessed gene expression in peripheral blood mononuclear cells (PBMC) and determined genes that significantly changed expression relative to that in uninfected animals over the course of infection. We detected a 72-h delay in the induction of host responses to infection during LUJV infection compared to that of the animals infected with LASV. This included genes associated with inflammatory and antiviral responses and was particularly apparent among groups of genes promoting cell death. We also observed early differential expression of a subset of genes specific to LUJV infection that accounts for the delayed inflammatory response. Cell type enrichment analysis suggested that host response induction delay and an LUJV-specific profile are due to a different proportion of natural killer cells responding in LUJV infection than that in the LASV-infected animals. Together, these data indicate that delayed proinflammatory and proapoptotic host responses to arenavirus infection could ameliorate disease severity. This conclusion provides insight into the cellular and molecular mechanisms of arenaviral hemorrhagic fever and suggests potential strategies for therapeutic development. IMPORTANCE: Old World arenaviruses are significant human pathogens that often are associated with high mortality. However, mechanisms underlying disease severity and virulence in arenavirus hemorrhagic fever are largely unknown, particularly regarding host responses that contribute to pathogenicity. This study describes a comparison between Lujo and Lassa virus infection in cynomolgus macaques. Lujo virus-infected macaques developed only mild illness, while Lassa virus-infected macaques developed severe illness consistent with Lassa fever. We determined that mild disease is associated with a delay in host expression of genes linked to virulence, such as those causing inflammation and cell death, and with distinct cell types that may mediate this delay. This is the first study to associate the timing and directionality of gene expression with arenaviral pathogenicity and disease outcome and evokes new potential approaches for developing effective therapeutics for treating these deadly emerging pathogens.


Asunto(s)
Infecciones por Arenaviridae/patología , Infecciones por Arenaviridae/virología , Fiebres Hemorrágicas Virales/patología , Fiebres Hemorrágicas Virales/virología , Lujo virus/patogenicidad , Animales , Infecciones por Arenaviridae/inmunología , Muerte Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Fiebres Hemorrágicas Virales/inmunología , Inflamación/patología , Células Asesinas Naturales/inmunología , Fiebre de Lassa/patología , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Leucocitos Mononucleares/inmunología , Macaca fascicularis , Factores de Tiempo
9.
J Virol ; 89(20): 10399-406, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246577

RESUMEN

UNLABELLED: Ebola virus (EBOV) initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal EBOV infections. The VP40 matrix protein is a key viral structural protein that is critical for virion egress. Physical and functional interactions between VP40 and host proteins such as Tsg101 and Nedd4 facilitate efficient release of VP40-driven virus-like particles (VLPs) and infectious virus. Here, we show that host suppressor of cytokine signaling 3 (SOCS3) can also bind to EBOV VP40, leading to enhanced ubiquitinylation and egress of VP40. Indeed, titers of infectious EBOV derived from SOCS3 knockout mouse embryonic fibroblasts (MEFs) were significantly reduced compared to those from wild-type (WT) MEFs at 24 and 48 h postinfection. Importantly, this reduced virus yield could be rescued back to WT levels by exogenously expressing SOCS3. Lastly, we show that SOCS3 expression is induced by EBOV glycoprotein (GP) expression and that VLPs containing EBOV VP40 and GP induced production of proinflammatory cytokines, which induced SOCS3 for negative-feedback regulation. These data indicate that host innate immune protein SOCS3 may play an important role in budding and pathogenesis of EBOV. IMPORTANCE: The VP40 matrix protein is a key structural protein critical for Ebola virus budding. Physical and functional interactions between VP40 and host proteins such as Tsg101 and Nedd4 facilitate efficient release of VLPs and infectious virus. We reported that host TLR4 is a sensor for Ebola GP on VLPs and that the resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines. Host SOCS3 regulates the innate immune response by controlling and limiting the proinflammatory response through negative-feedback inhibition of cytokine receptors. We present evidence that Ebola virus VLPs stimulate induction of SOCS3 as well as proinflammatory cytokines, and that expression of human SOCS3 enhances budding of Ebola VLPs and infectious virus via a mechanism linked to the host ubiquitinylation machinery.


Asunto(s)
Fibroblastos/metabolismo , Regulación Viral de la Expresión Génica , Macrófagos/metabolismo , Nucleoproteínas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas del Núcleo Viral/metabolismo , Liberación del Virus/genética , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ebolavirus/genética , Ebolavirus/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Retroalimentación Fisiológica , Fibroblastos/virología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas Nedd4 , Nucleoproteínas/genética , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas del Núcleo Viral/genética , Virión/genética , Virión/metabolismo
10.
J Virol ; 90(5): 2240-53, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26656717

RESUMEN

UNLABELLED: The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE: As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Vía de Señalización Wnt/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Inflamación/patología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/patología , Pulmón/virología , Ratones Endogámicos BALB C , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/enzimología , Virus Reordenados/patogenicidad , Proteínas Virales/genética , Virulencia , Factores de Virulencia/genética
11.
PLoS Pathog ; 10(8): e1004250, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25144235

RESUMEN

The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies.


Asunto(s)
Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Neumonía Viral/patología , Animales , Callithrix , Infecciones por Coronavirus/virología , Inmunohistoquímica , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio , Neumonía Viral/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Mol Cell Proteomics ; 13(4): 1119-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24403597

RESUMEN

Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is a crucial direction for the field of medicine. While MS-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new instrumental platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry separations with liquid chromatography and MS to dramatically increase measurement sensitivity and throughput, further enabling future high throughput MS-based clinical applications. An initial application of the liquid chromatography--ion mobility spectrometry-MS platform analyzing blood serum samples from 60 postliver transplant patients with recurrent fibrosis progression and 60 nontransplant patients illustrates its potential utility for disease characterization.


Asunto(s)
Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Proteoma/metabolismo , Proteómica/métodos , Cromatografía Liquida , Humanos , Iones/química , Cirrosis Hepática/metabolismo , Trasplante de Hígado , Espectrometría de Masas , Proteómica/instrumentación
13.
Proc Natl Acad Sci U S A ; 110(5): 1893-8, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319647

RESUMEN

Ebola viruses cause hemorrhagic disease in humans and nonhuman primates with high fatality rates. These viruses pose a significant health concern worldwide due to the lack of approved therapeutics and vaccines as well as their potential misuse as bioterrorism agents. Although not licensed for human use, recombinant vesicular stomatitis virus (rVSV) expressing the filovirus glycoprotein (GP) has been shown to protect macaques from Ebola virus and Marburg virus infections, both prophylactically and postexposure in a homologous challenge setting. However, the immune mechanisms of protection conferred by this vaccine platform remain poorly understood. In this study, we set out to investigate the role of humoral versus cellular immunity in rVSV vaccine-mediated protection against lethal Zaire ebolavirus (ZEBOV) challenge. Groups of cynomolgus macaques were depleted of CD4+ T, CD8+ T, or CD20+ B cells before and during vaccination with rVSV/ZEBOV-GP. Unfortunately, CD20-depleted animals generated a robust IgG response. Therefore, an additional group of vaccinated animals were depleted of CD4+ T cells during challenge. All animals were subsequently challenged with a lethal dose of ZEBOV. Animals depleted of CD8+ T cells survived, suggesting a minimal role for CD8+ T cells in vaccine-mediated protection. Depletion of CD4+ T cells during vaccination caused a complete loss of glycoprotein-specific antibodies and abrogated vaccine protection. In contrast, depletion of CD4+ T cells during challenge resulted in survival of the animals, indicating a minimal role for CD4+ T-cell immunity in rVSV-mediated protection. Our results suggest that antibodies play a critical role in rVSV-mediated protection against ZEBOV.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/sangre , Citocinas/sangre , Citocinas/inmunología , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/genética , Ensayo de Inmunoadsorción Enzimática , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Hígado/inmunología , Hígado/parasitología , Hígado/patología , Linfocitos/inmunología , Macaca fascicularis , Masculino , Marburgvirus/genética , Marburgvirus/inmunología , Glicoproteínas de Membrana/genética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/inmunología , Bazo/parasitología , Bazo/patología , Factores de Tiempo , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Proteínas del Envoltorio Viral/genética , Carga Viral/genética
14.
Proc Natl Acad Sci U S A ; 110(41): 16598-603, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24062443

RESUMEN

In 2012, a novel betacoronavirus, designated Middle East respiratory syndrome coronavirus or MERS-CoV and associated with severe respiratory disease in humans, emerged in the Arabian Peninsula. To date, 108 human cases have been reported, including cases of human-to-human transmission. The availability of an animal disease model is essential for understanding pathogenesis and developing effective countermeasures. Upon a combination of intratracheal, ocular, oral, and intranasal inoculation with 7 × 10(6) 50% tissue culture infectious dose of the MERS-CoV isolate HCoV-EMC/2012, rhesus macaques developed a transient lower respiratory tract infection. Clinical signs, virus shedding, virus replication in respiratory tissues, gene expression, and cytokine and chemokine profiles peaked early in infection and decreased over time. MERS-CoV caused a multifocal, mild to marked interstitial pneumonia, with virus replication occurring mainly in alveolar pneumocytes. This tropism of MERS-CoV for the lower respiratory tract may explain the severity of the disease observed in humans and the, up to now, limited human-to-human transmission.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Modelos Animales de Enfermedad , Pulmón/patología , Macaca mulatta , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Animales , Pulmón/virología , Microscopía Electrónica de Transmisión , Especificidad de la Especie , Virión/ultraestructura , Replicación Viral/fisiología , Esparcimiento de Virus/fisiología
15.
J Virol ; 88(18): 10556-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24991006

RESUMEN

UNLABELLED: Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. IMPORTANCE: Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host response is a promising approach to treating influenza. Here we characterize the host transcriptomic response to emerging H7N9 influenza virus and compare it with the responses to H7N7, H5N1, and pdm09H1N1. All three avian viruses were pathogenic in mice and elicited a transcriptomic signature that also occurs in response to the legendary 1918 influenza virus. Our work identifies host responses that could be targeted to treat severe H7N9 influenza and identifies six FDA-approved drugs that could potentially be repurposed as H7N9 influenza therapeutics.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N7 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/genética , Transcriptoma , Animales , Citocinas/genética , Citocinas/fisiología , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/metabolismo , Gripe Humana/mortalidad , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Virulencia
16.
J Virol ; 88(8): 4251-64, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24478444

RESUMEN

UNLABELLED: The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2'-O-methyltransferase (2'-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2'-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2'-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2'-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2'-O-MTase activity to subvert the immune system. IMPORTANCE: Preventing recognition by the host immune response represents a critical aspect necessary for successful viral infection. Several viruses, including SARS-CoV, utilize virally encoded 2'-O-MTases to camouflage and obscure their viral RNA from host cell sensing machinery, thus preventing recognition and activation of cell intrinsic defense pathways. For SARS-CoV, the absence of this 2'-O-MTase activity results in significant attenuation characterized by decreased viral replication, reduced weight loss, and limited breathing dysfunction in mice. The results indicate that both MDA5, a recognition molecule, and the IFIT family play an important role in mediating this attenuation with restored virulence observed in their absence. Understanding this virus-host interaction provided an opportunity to design a successful live-attenuated vaccine for SARS-CoV and opens avenues for treatment and prevention of emerging CoVs and other RNA virus infections.


Asunto(s)
Metiltransferasas/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Humanos , Helicasa Inducida por Interferón IFIH1 , Masculino , Metiltransferasas/química , Metiltransferasas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Proteínas de Unión al ARN , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virulencia , Replicación Viral
17.
J Virol ; 88(16): 8768-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850744

RESUMEN

UNLABELLED: Polyadenylated mature mRNAs are the focus of standard transcriptome analyses. However, the profiling of nascent transcripts, which often include nonpolyadenylated RNAs, can unveil novel insights into transcriptional regulation. Here, we separately sequenced total RNAs (Total RNAseq) and mRNAs (mRNAseq) from the same HIV-1-infected human CD4(+) T cells. We found that many nonpolyadenylated RNAs were differentially expressed upon HIV-1 infection, and we identified 8 times more differentially expressed genes at 12 h postinfection by Total RNAseq than by mRNAseq. These expression changes were also evident by concurrent changes in introns and were recapitulated by later mRNA changes, revealing an unexpectedly significant delay between transcriptional initiation and mature mRNA production early after HIV-1 infection. We computationally derived and validated the underlying regulatory programs, and we predicted drugs capable of reversing these HIV-1-induced expression changes followed by experimental confirmation. Our results show that combined total and mRNA transcriptome analysis is essential for fully capturing the early host response to virus infection and provide a framework for identifying candidate drugs for host-directed therapy against HIV/AIDS. IMPORTANCE: In this study, we used mass sequencing to identify genes differentially expressed in CD4(+) T cells during HIV-1 infection. To our surprise, we found many differentially expressed genes early after infection by analyzing both newly transcribed unprocessed pre-mRNAs and fully processed mRNAs, but not by analyzing mRNAs alone, indicating a significant delay between transcription initiation and mRNA production early after HIV-1 infection. These results also show that important findings could be missed by the standard practice of analyzing mRNAs alone. We then derived the regulatory mechanisms driving the observed expression changes using integrative computational analyses. Further, we predicted drugs that could reverse the observed expression changes induced by HIV-1 infection and showed that one of the predicted drugs indeed potently inhibited HIV-1 infection. This shows that it is possible to identify candidate drugs for host-directed therapy against HIV/AIDS using our genomics-based approach.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Transcripción Genética/genética , Linfocitos T CD4-Positivos/virología , Línea Celular , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Infecciones por VIH/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN/genética , ARN Mensajero/genética , Replicación Viral/genética
18.
J Virol ; 88(14): 7962-72, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807713

RESUMEN

Pathology resulting from human immunodeficiency virus (HIV) infection is driven by protracted inflammation; the primary loss of CD4(+) T cells is caused by activation-driven apoptosis. Recent studies of nonhuman primates (NHPs) have suggested that during the acute phase of infection, antiviral mucosal immunity restricts viral replication in the primary infection compartment. These studies imply that HIV achieves systemic infection as a consequence of a failure in host antiviral immunity. Here, we used high-dose intrarectal inoculation of rhesus macaques with simian immunodeficiency virus (SIV) SIVmac251 to examine how the mucosal immune system is overcome by SIV during acute infection. The host response in rectal mucosa was characterized by deep mRNA sequencing (mRNA-seq) at 3 and 12 days postinoculation (dpi) in 4 animals for each time point. While we observed a strong host transcriptional response at 3 dpi, functions relating to antiviral immunity were absent. Instead, we observed a significant number of differentially expressed genes relating to cell adhesion and reorganization of the cytoskeleton. We also observed downregulation of genes encoding members of the claudin family of cell adhesion molecules, which are coexpressed with genes associated with pathology in the colorectal mucosa, and a large number of noncoding transcripts. In contrast, at 12 dpi the differentially expressed genes were enriched in those involved with immune system functions, in particular, functions relating to T cells, B cells, and NK cells. Our findings indicate that host responses that negatively affect mucosal integrity occur before inflammation. Consequently, when inflammation is activated at peak viremia, mucosal integrity is already compromised, potentially enabling rapid tissue damage, driving further inflammation. Importance: The HIV pandemic is one of the major threats to human health, causing over a million deaths per year. Recent studies have suggested that mucosal antiviral immune responses play an important role in preventing systemic infection after exposure to the virus. Yet, despite their potential role in decreasing transmission rates between individuals, these antiviral mechanisms are poorly understood. Here, we carried out the first deep mRNA sequencing analysis of mucosal host responses in the primary infection compartment during acute SIV infection. We found that during acute infection, a significant host response was mounted in the mucosa before inflammation was triggered. Our analysis indicated that the response has a detrimental effect on tissue integrity, causing increased permeability, tissue damage, and recruitment of SIV target cells. These results emphasize the importance of mucosal host responses preceding immune activation in preventing systemic SIV infection.


Asunto(s)
Adhesión Celular , Interacciones Huésped-Patógeno , Mucosa Intestinal/inmunología , Mucosa Intestinal/virología , Recto/inmunología , Recto/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos B/inmunología , Claudinas/metabolismo , Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Mucosa Intestinal/fisiología , Células Asesinas Naturales/inmunología , Macaca mulatta , Masculino , Linfocitos T/inmunología , Factores de Tiempo
19.
PLoS Pathog ; 9(2): e1003168, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23544010

RESUMEN

The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/-) × Ifnar(-/-) mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/-) × Ifnar(-/-) infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection.


Asunto(s)
Inmunidad Celular/genética , Inmunidad Innata/genética , Tropismo Viral/genética , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/fisiología , Animales , Redes Reguladoras de Genes/inmunología , Genes/fisiología , Humanos , Interferón Tipo I/metabolismo , Interferón Tipo I/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología , Biología de Sistemas/métodos , Fiebre del Nilo Occidental/genética
20.
PLoS Pathog ; 9(2): e1003196, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23468633

RESUMEN

Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss.


Asunto(s)
Variación Genética , Interacciones Huésped-Patógeno/genética , Gripe Humana/virología , Modelos Genéticos , Infecciones por Orthomyxoviridae/virología , Enfermedades de los Roedores/virología , Animales , Cruzamientos Genéticos , Femenino , Humanos , Virus de la Influenza A , Gripe Humana/genética , Gripe Humana/patología , Pulmón/patología , Ratones , Ratones Endogámicos , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Fenotipo , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Recombinación Genética , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/patología , Especificidad de la Especie , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA