Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870331

RESUMEN

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Asunto(s)
Células Epiteliales Alveolares , Mecanotransducción Celular , Células Epiteliales Alveolares/metabolismo , Células Cultivadas , Pulmón , Diferenciación Celular/fisiología , Respiración
2.
Nature ; 604(7904): 120-126, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355013

RESUMEN

The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.


Asunto(s)
Bronquiolos , Hurones , Células Madre Multipotentes , Alveolos Pulmonares , Animales , Bronquiolos/citología , Linaje de la Célula , Humanos , Pulmón/patología , Ratones , Células Madre Multipotentes/citología , Alveolos Pulmonares/citología , Enfermedad Pulmonar Obstructiva Crónica
3.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252035

RESUMEN

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Asunto(s)
Células Epiteliales Alveolares , Reprogramación Celular , Lesión Pulmonar , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Fibrosis Pulmonar , Células Epiteliales Alveolares/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inositol/metabolismo , Lesión Pulmonar/patología , Proteínas Serina-Treonina Quinasas/genética , Proteostasis , Fibrosis Pulmonar/genética , Proteínas de la Membrana/genética , Proteína C Asociada a Surfactante Pulmonar/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38860845

RESUMEN

COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar Type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, SARS-CoV-2 and other ß-coronavirus genus members induce an ER stress response in vitro, however the consequences for host AT2 function in vivo are less understood. To study this, two murine models of coronavirus infection were employed- mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse adapted SARS-CoV-2 strain. MHV-1 infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased IRE1α signaling and a biphasic response in PERK signaling accompanied marked reductions in AT2 and BALF surfactant protein (SP-B, SP-C) content, increases in surfactant surface tension, and emergence of a re-programmed epithelial cell population (Krt8+, Cldn4+). The loss of a homeostatic AT2 endophenotype was attenuated by treatment with the IRE1α inhibitor OPK711. As proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from ß-coronavirus infection results from an aberrant host response activating multiple AT2 UPR pathways, altering surfactant metabolism/function, and changing AT2 endophenotypes offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.

5.
Am J Respir Cell Mol Biol ; 68(4): 358-365, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36473455

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial lung disease. A barrier to developing more effective therapies for IPF is the dearth of preclinical models that recapitulate the early pathobiology of this disease. Intratracheal bleomycin, the conventional preclinical murine model of IPF, fails to reproduce the intrinsic dysfunction to the alveolar epithelial type 2 cell (AEC2) that is believed to be a proximal event in the pathogenesis of IPF. Murine fibrosis models based on SFTPC (Surfactant Protein C gene) mutations identified in patients with interstitial lung disease cause activation of the AEC2 unfolded protein response and endoplasmic reticulum stress-an AEC2 dysfunction phenotype observed in IPF. Although these models achieve spontaneous fibrosis, they do so with precedent lung injury and thus are challenged to phenocopy the general clinical course of patients with IPF-gradual progressive fibrosis and loss of lung function. Here, we report a refinement of a murine Sftpc mutation model to recapitulate the clinical course, physiological impairment, parenchymal cellular composition, and biomarkers associated with IPF. This platform provides the field with an innovative model to understand IPF pathogenesis and index preclinical therapeutic candidates.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína C Asociada a Surfactante Pulmonar , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Progresión de la Enfermedad , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Mutación/genética , Proteína C Asociada a Surfactante Pulmonar/genética , Proteína C Asociada a Surfactante Pulmonar/metabolismo
6.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33789998

RESUMEN

The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.


Asunto(s)
COVID-19/metabolismo , Coronavirus Humano OC43/metabolismo , Proteínas de la Membrana/metabolismo , SARS-CoV-2/metabolismo , Transducción de Señal , Células A549 , Animales , COVID-19/genética , Chlorocebus aethiops , Coronavirus Humano OC43/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , SARS-CoV-2/genética , Células Vero
7.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L291-L307, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34132118

RESUMEN

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of ABCA3 mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar ABCA3 mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear. The present study, informed by a patient homozygous for the E292V variant, used an in vitro and a preclinical murine model to evaluate the mechanisms by which E292V expression promotes aberrant lung injury and parenchymal remodeling. Cell lines stably expressing enhanced green fluorescent protein (EGFP)-tagged ABCA3 isoforms show a functional deficiency of the ABCA3E292V variant as a lipid transporter. AT2 cells isolated from mice constitutively homozygous for ABCA3E292V demonstrate the presence of small electron-dense lamellar bodies, time-dependent alterations in macroautophagy, and induction of apoptosis. These changes in AT2 cell homeostasis are accompanied by a spontaneous lung phenotype consisting of both age-dependent inflammation and fibrillary collagen deposition in alveolar septa. Older ABCA3E292V mice exhibit increased vulnerability to exogenous lung injury by bleomycin. Collectively, these findings support the hypothesis that the ABCA3E292V variant is a susceptibility factor for lung injury through effects on surfactant deficiency and impaired AT2 cell autophagy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Células Epiteliales Alveolares , Autofagia , Regulación de la Expresión Génica , Lesión Pulmonar , Mutación Missense , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Sustitución de Aminoácidos , Animales , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Mutantes , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/patología
8.
J Immunol ; 202(9): 2760-2771, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30910861

RESUMEN

Patients with idiopathic pulmonary fibrosis (IPF) often experience precipitous deteriorations, termed "acute exacerbations" (AE), marked by diffuse alveolitis and altered gas exchange, resulting in a significant loss of lung function or mortality. The missense isoleucine to threonine substitution at position 73 (I73T) in the alveolar type 2 cell-restricted surfactant protein-C (SP-C) gene (SFTPC) has been linked to clinical IPF. To better understand the sequence of events that impact AE-IPF, we leveraged a murine model of inducible SP-CI73T (SP-CI73T/I73TFlp+/- ) expression. Following administration of tamoxifen to 8-12-wk-old mice, an upregulation of SftpcI73T initiated a diffuse lung injury marked by increases in bronchoalveolar lavage fluid (BALF) protein and histochemical evidence of CD45+ and CD11b+ cell infiltrates. Flow cytometry of collagenase-digested lung cells revealed a transient, early reduction in SiglecFhiCD11blowCD64hiCD11chi macrophages, countered by the sequential accumulation of SiglecFloCD11b+CD64-CD11c-CCR2+Ly6C+ immature macrophages (3 d), Ly6G+ neutrophils (7 d), and SiglecFhiCD11bhiCD11clo eosinophils (2 wk). By mRNA analysis, BALF cells demonstrated a time-dependent phenotypic shift from a proinflammatory (3 d) to an anti-inflammatory/profibrotic activation state, along with serial elaboration of monocyte and eosinophil recruitment factors. The i.v. administration of clodronate effectively reduced total BALF cell numbers, CCR2+ immature macrophages, and eosinophil influx while improving survival. In contrast, resident macrophage depletion from the intratracheal delivery of clodronate liposomes enhanced SftpcI73T -induced mortality. These results using SftpcI73T mice provide a detailed ontogeny for AE-IPF driven by alveolar epithelial dysfunction that induces a polycellular inflammation initiated by the early influx of proinflammatory CCR2+Ly6Chi immature macrophages.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/inmunología , Enfermedades Pulmonares Intersticiales/inmunología , Macrófagos/inmunología , Mutación , Mucosa Respiratoria/inmunología , Regulación hacia Arriba/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Eosinófilos/inmunología , Eosinófilos/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/patología , Macrófagos/patología , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Neutrófilos/patología , Proteína C Asociada a Surfactante Pulmonar , Mucosa Respiratoria/patología , Tamoxifeno/farmacología , Regulación hacia Arriba/efectos de los fármacos
9.
Clin Infect Dis ; 69(1): 52-58, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-30304487

RESUMEN

BACKGROUND: Neuraminidase inhibitors (NAIs) are the only effective therapy for influenza, but few studies have assessed the impact of early NAI therapy on clinical outcomes or the patient-level factors that determine early NAI delivery in hospitalized patients. METHODS: We conducted a retrospective cohort study of all adults hospitalized in a metropolitan tertiary care hospital with confirmed influenza from April 2009 to March 2014. We performed logistic regression to determine patient-level factors that were associated with early NAI therapy. We analyzed the association of early NAI therapy with hospital lengths of stay (LOS) and in-hospital mortality rates using linear and logistic regression, respectively. RESULTS: In total, 699 patients were admitted with influenza during the 5 influenza seasons. Of those, 582 (83.4%) received NAI therapy; however, only 26.0% received the first dose within 6 hours of hospitalization (early NAI). Patients with diabetes mellitus or pregnancy were more likely to receive early NAI (P = .01, vs. P < .001 in those without these conditions), as were those reporting fever or myalgias at presentation (P = .002, vs. P = .005 without). Immunosuppressed patients were less likely to receive early NAI (P = .04). Early NAI was associated with shorter hospital LOS (P < .001). No patients died in the early NAI group, compared to 18 deaths in the 399 patients receiving NAI after 6 hours (4.5%) and 4 deaths in the 116 patients not receiving NAI (3.4%). CONCLUSIONS: Over multiple influenza seasons, early NAI therapy was associated with shorter LOS in patients admitted with influenza. This suggests that efforts should focus on facilitating earlier therapy in patients with suspected influenza.


Asunto(s)
Antivirales/uso terapéutico , Intervención Médica Temprana/métodos , Gripe Humana/tratamiento farmacológico , Tiempo de Internación/estadística & datos numéricos , Oseltamivir/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Mortalidad Hospitalaria , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Estaciones del Año , Centros de Atención Terciaria/estadística & datos numéricos , Factores de Tiempo , Resultado del Tratamiento
10.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1094-L1106, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30892074

RESUMEN

Cardiac glycosides (CGs) are used primarily for cardiac failure and have been reported to have other effects, including inhibition of viral replication. Here we set out to study mechanisms by which CGs as inhibitors of the Na-K-ATPase decrease influenza A virus (IAV) replication in the lungs. We found that CGs inhibit influenza virus replication in alveolar epithelial cells by decreasing intracellular potassium, which in turn inhibits protein translation, independently of viral entry, mRNA transcription, and protein degradation. These effects were independent of the Src signaling pathway and intracellular calcium concentration changes. We found that short-term treatment with ouabain prevented IAV replication without cytotoxicity. Rodents express a Na-K-ATPase-α1 resistant to CGs. Thus we utilized Na-K-ATPase-α1-sensitive mice, infected them with high doses of influenza virus, and observed a modest survival benefit when treated with ouabain. In summary, we provide evidence that the inhibition of the Na-K-ATPase by CGs decreases influenza A viral replication by modulating the cell protein translational machinery and results in a modest survival benefit in mice.


Asunto(s)
Glicósidos Cardíacos/farmacología , Inhibidores Enzimáticos/farmacología , Gripe Humana/tratamiento farmacológico , Biosíntesis de Proteínas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Replicación Viral/fisiología , Células A549 , Células Epiteliales Alveolares/virología , Animales , Antivirales/farmacología , Línea Celular Tumoral , Perros , Femenino , Humanos , Virus de la Influenza A , Pulmón/virología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ouabaína/farmacología , Potasio/metabolismo
11.
Ann Thorac Surg ; 117(2): 458-465, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37572959

RESUMEN

BACKGROUND: Small animal models remain invaluable for the preclinical study of emerging molecular imaging agents. However, the data obtained in this setting are generated in genetically homogenous animals that do not mimic human pathophysiology. The purpose of this study was to prospectively validate precision-cut lung slices (PCLSs) obtained from patients with lung cancer as a translational tool for the development of targeted fluorophores. METHODS: The lung tissue was gently inflated with 2% Low-Melt Agarose (Fisher, 16520050) to avoid lung damage and minimize inflation pressure. The slices were then loaded into specialized cylindrical cartridges and inserted into a compressotome, and slices 150 to 350 µm thick were cut. Samples were incubated with fluorophore conjugates for ex vivo validation and immunohistochemical staining for receptor expression. RESULTS: A total of 184 unique 3-dimensional, architecturally preserved normal lung and non-small cell lung cancer samples were obtained between 2020 and 2022. The median nodule size was 1.1 ± 0.21 cm for benign lesions and 2.1 ± 0.19 cm for malignant nodules. A total of 101 of 135 (74.8%) malignant lesions were adenocarcinoma spectrum lung cancers. The median viability was 9.78 ± 1.86 days, and 1 µM of FAPL-S0456 (high-affinity fibroblast activation protein [FAP] targeting ligand linked to the near-infrared fluorophore S0456, On Target Laboratories)-targeted near-infrared fluorochrome localization demonstrated correlative labeling of FAP-positive tumor areas with a correlation coefficient of +0.94 (P < .01). There was no FAP fluorochrome uptake in normal lungs (r = -1; P < .001). CONCLUSIONS: PCLSs comprise a novel human tissue-based translational model that can be used to validate the efficacy of molecular imaging fluorochromes. PCLSs preserve the tumor microenvironment and parenchymal architecture that closely resemble the interactions of the immune and stromal components in humans.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Colorantes Fluorescentes/metabolismo , Neoplasias Pulmonares/patología , Pulmón/patología , Imagen Molecular , Microambiente Tumoral
12.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38496421

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS. Starting at 8 weeks of age, HPS mice exhibited progressive loss of AT2 cell numbers. HPS AT2 cell was impaired ex vivo and in vivo. Incorporating AT2 cell lineage tracing in HPS mice, we observed aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and p53 activation. Lineage tracing and modeling studies demonstrated that HPS AT2 cells were primed to persist in a Krt8+ reprogrammed transitional state, mediated by p53 activity. Intrinsic AT2 progenitor cell dysfunction and p53 pathway dysregulation are novel mechanisms of disease in HPS-related pulmonary fibrosis, with the potential for early targeted intervention before the onset of fibrotic lung disease.

13.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915627

RESUMEN

Lipid nanoparticles (LNPs) have transformed genetic medicine, recently shown by their use in COVID-19 mRNA vaccines. While loading LNPs with mRNA has many uses, loading DNA would provide additional advantages such as long-term expression and availability of promoter sequences. However, here we show that plasmid DNA (pDNA) delivery via LNPs (pDNA-LNPs) induces acute inflammation in naïve mice which we find is primarily driven by the cGAS-STING pathway. Inspired by DNA viruses that inhibit this pathway for replication, we co-loaded endogenous lipids that inhibit STING into pDNA-LNPs. Specifically, loading nitro-oleic acid (NOA) into pDNA-LNPs (NOA-pDNA-LNPs) ameliorates serious inflammatory responses in vivo enabling prolonged transgene expression (at least 1 month). Additionally, we demonstrate the ability to iteratively optimize NOA-pDNA-LNPs' expression by performing a small LNP formulation screen, driving up expression 50-fold in vitro . Thus, NOA-pDNA-LNPs, and pDNA-LNPs co-loaded with other bioactive molecules, will provide a major new tool in the genetic medicine toolbox, leveraging the power of DNA's long-term and promoter-controlled expression.

14.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38585863

RESUMEN

Alveolar epithelial type II (AT2) cell dysfunction is implicated in the pathogenesis of familial and sporadic idiopathic pulmonary fibrosis (IPF). We previously described that expression of an AT2 cell exclusive disease-associated protein isoform (SP-CI73T) in murine and patient-specific induced pluripotent stem cell (iPSC)-derived AT2 cells leads to a block in late macroautophagy and promotes time-dependent mitochondrial impairments; however, how a metabolically dysfunctional AT2 cell results in fibrosis remains elusive. Here using murine and human iPSC-derived AT2 cell models expressing SP-CI73T, we characterize the molecular mechanisms governing alterations in AT2 cell metabolism that lead to increased glycolysis, decreased mitochondrial biogenesis, disrupted fatty acid oxidation, accumulation of impaired mitochondria, and diminished AT2 cell progenitor capacity manifesting as reduced AT2 self-renewal and accumulation of transitional epithelial cells. We identify deficient AMP-kinase signaling as a key upstream signaling hub driving disease in these dysfunctional AT2 cells and augment this pathway to restore alveolar epithelial metabolic function, thus successfully alleviating lung fibrosis in vivo.

15.
JCI Insight ; 7(20)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36099047

RESUMEN

A central feature of progressive vascular remodeling is altered smooth muscle cell (SMC) homeostasis; however, the understanding of how different cell populations contribute to this process is limited. Here, we utilized single-cell RNA sequencing to provide insight into cellular composition changes within isolated pulmonary arteries (PAs) from pulmonary arterial hypertension and donor lungs. Our results revealed that remodeling skewed the balanced communication network between immune and structural cells, in particular SMCs. Comparative analysis with murine PAs showed that human PAs harbored heterogeneous SMC populations with an abundant intermediary cluster displaying a gradient transition between SMCs and adventitial fibroblasts. Transcriptionally distinct SMC populations were enriched in specific biological processes and could be differentiated into 4 major clusters: oxygen sensing (enriched in pericytes), contractile, synthetic, and fibroblast-like. End-stage remodeling was associated with phenotypic shift of preexisting SMC populations and accumulation of synthetic SMCs in neointima. Distinctly regulated genes in clusters built nonredundant regulatory hubs encompassing stress response and differentiation regulators. The current study provides a blueprint of cellular and molecular changes on a single-cell level that are defining the pathological vascular remodeling process.


Asunto(s)
Músculo Liso Vascular , Remodelación Vascular , Ratones , Humanos , Animales , Remodelación Vascular/genética , Arteria Pulmonar/patología , Transcriptoma , Oxígeno
16.
Adv Mater ; 34(28): e2202992, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35522531

RESUMEN

Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.


Asunto(s)
Hidrogeles , Células Madre Pluripotentes Inducidas , Animales , Humanos , Ácido Hialurónico/metabolismo , Hidrogeles/química , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón , Ratones , Organoides/metabolismo
17.
ACS Nano ; 16(3): 4666-4683, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35266686

RESUMEN

A long-standing goal of nanomedicine is to improve a drug's benefit by loading it into a nanocarrier that homes solely to a specific target cell and organ. Unfortunately, nanocarriers usually end up with only a small percentage of the injected dose (% ID) in the target organ, due largely to clearance by the liver and spleen. Further, cell-type-specific targeting is rarely achieved without reducing target organ accumulation. To solve these problems, we introduce DART (dual affinity to RBCs and target cells), in which nanocarriers are conjugated to two affinity ligands, one binding red blood cells and one binding a target cell (here, pulmonary endothelial cells). DART nanocarriers first bind red blood cells and then transfer to the target organ's endothelial cells as the bound red blood cells squeeze through capillaries. We show that within minutes after intravascular injection in mice nearly 70% ID of DART nanocarriers accumulate in the target organ (lungs), more than doubling the % ID ceiling achieved by a multitude of prior technologies, finally achieving a majority % ID in a target organ. Humanized DART nanocarriers in ex vivo perfused human lungs recapitulate this phenomenon. Furthermore, DART enhances the selectivity of delivery to target endothelial cells over local phagocytes within the target organ by 6-fold. DART's marked improvement in both organ- and cell-type targeting may thus be helpful in localizing drugs for a multitude of medical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Eritrocitos , Pulmón/metabolismo , Ratones , Preparaciones Farmacéuticas
18.
Ann Vasc Surg ; 25(1): 101-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21172585

RESUMEN

BACKGROUND: Endoscopic saphenous vein harvest (EVH) has been shown to lower wound infection rates and cost compared with conventional harvest, although long-term patency data are lacking. A small series of studies has recently suggested that patency is inferior to conventionally harvested vein technique, and we thus sought to explore this question by reviewing our cumulative experience with this technique. METHODS: The short- and long-term outcomes of all lower extremity bypasses (LEBPs) using saphenous vein at one institution over a period of 8.5 years were retrospectively reviewed. RESULTS: A total of 363 patients averaging 67 ± 24 to 100 years of age had undergone LEBP and had charts available for review. Of these 363 patients, 170 underwent EVH (90% using a noninsufflation technique) and 193 conventional (by means of continuous or skip incisions); 48% of patients reported tissue loss and no differences in indication for surgery were noted between groups. Mean follow-up was 35.1 (range: <1-105) months. Primary patency rates were worse in the EVH group as compared with conventional at six (63.3% ± 4.0% vs. 77.3% ± 3.3%), 12 (50.4% ± 4.2% vs. 73.7% ± 3.6%), and 36 (42.2% ± 4.5% vs. 59.1% ± 4.9%) months (all p < 0.001), although these differences were largely limited to patients with limb-threat and diabetes. However, limb salvage and survival, were identical between groups. Contrary to previous experience, there were no differences in length of stay or wound complication rates. CONCLUSIONS: The overall results of this study show an inferior long-term patency rate for endoscopically harvested saphenous vein after LEBP in our series as a whole, and do not confirm the short-term benefit previously shown in a selected cohort. These differences were, however, minimal or absent in patients with claudication or absence of diabetes, and EVH may continue to play a role in these cases.


Asunto(s)
Endoscopía , Extremidad Inferior/irrigación sanguínea , Enfermedades Vasculares Periféricas/cirugía , Vena Safena/trasplante , Recolección de Tejidos y Órganos/métodos , Injerto Vascular , Anciano , Anciano de 80 o más Años , Distribución de Chi-Cuadrado , Endoscopía/efectos adversos , Femenino , Oclusión de Injerto Vascular/etiología , Humanos , Recuperación del Miembro , Masculino , Persona de Mediana Edad , New York , Enfermedades Vasculares Periféricas/fisiopatología , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Recolección de Tejidos y Órganos/efectos adversos , Resultado del Tratamiento , Injerto Vascular/efectos adversos , Grado de Desobstrucción Vascular
19.
Front Immunol ; 12: 665818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968067

RESUMEN

Acute inflammatory exacerbations (AIE) represent precipitous deteriorations of a number of chronic lung conditions, including pulmonary fibrosis (PF), chronic obstructive pulmonary disease and asthma. AIEs are marked by diffuse and persistent polycellular alveolitis that profoundly accelerate lung function decline and mortality. In particular, excess monocyte mobilization during AIE and their persistence in the lung have been linked to poor disease outcome. The etiology of AIEs remains quite uncertain, but environmental exposure and genetic predisposition/mutations have been identified as two contributing factors. Guided by clinical evidence, we have developed a mutant model of pulmonary fibrosis leveraging the PF-linked missense isoleucine to threonine substitution at position 73 [I73T] in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene [SFTPC]. With this toolbox at hand, the present work investigates the role of peripheral monocytes during the initiation and progression of AIE-PF. Genetic ablation of CCR2+ monocytes (SP-CI73TCCR2KO) resulted in improved lung histology, mouse survival, and reduced inflammation compared to SP-CI73TCCR2WT cohorts. FACS analysis of CD11b+CD64-Ly6Chi monocytes isolated 3 d and 14 d after SP-CI73T induced injury reveals dynamic transcriptional changes associated with "Innate Immunity' and 'Extracellular Matrix Organization' signaling. While immunohistochemical and in situ hybridization analysis revealed comparable levels of tgfb1 mRNA expression localized primarily in parenchymal cells found nearby foci of injury we found reduced effector cell activation (C1q, iNOS, Arg1) in SP-CI73TCCR2KO lungs as well as partial colocalization of tgfb1 mRNA expression in Arg1+ cells. These results provide a detailed picture of the role of resident macrophages and recruited monocytes in the context of AIE-PF driven by alveolar epithelial dysfunction.


Asunto(s)
Enfermedades Pulmonares Intersticiales/inmunología , Mutación , Células Mieloides/inmunología , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Mucosa Respiratoria/inmunología , Animales , Epitelio/metabolismo , Femenino , Inflamación/metabolismo , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/patología , Masculino , Ratones , Ratones Transgénicos , Células Mieloides/patología , Proteína C Asociada a Surfactante Pulmonar/genética , Receptores CCR2/genética , Receptores CCR2/inmunología , Mucosa Respiratoria/patología , Análisis de Secuencia de ARN , Transducción de Señal , Tamoxifeno/farmacología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
20.
Nat Commun ; 12(1): 3993, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183650

RESUMEN

Type II alveolar cells (AT2s) are critical for basic respiratory homeostasis and tissue repair after lung injury. Prior studies indicate that AT2s also express major histocompatibility complex class II (MHCII) molecules, but how MHCII expression by AT2s is regulated and how it contributes to host defense remain unclear. Here we show that AT2s express high levels of MHCII independent of conventional inflammatory stimuli, and that selective loss of MHCII from AT2s in mice results in modest worsening of respiratory virus disease following influenza and Sendai virus infections. We also find that AT2s exhibit MHCII presentation capacity that is substantially limited compared to professional antigen presenting cells. The combination of constitutive MHCII expression and restrained antigen presentation may position AT2s to contribute to lung adaptive immune responses in a measured fashion, without over-amplifying damaging inflammation.


Asunto(s)
Células Epiteliales Alveolares/inmunología , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Respirovirus/inmunología , Animales , Línea Celular , Perros , Antígenos de Histocompatibilidad Clase II/inmunología , Inflamación/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/citología , Pulmón/inmunología , Macaca mulatta , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/patología , Infecciones por Respirovirus/patología , Virus Sendai/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA