Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593630

RESUMEN

Magnetic resonance fingerprinting (MRF) is a method to extract quantitative tissue properties such as [Formula: see text] and [Formula: see text] relaxation rates from arbitrary pulse sequences using conventional MRI hardware. MRF pulse sequences have thousands of tunable parameters, which can be chosen to maximize precision and minimize scan time. Here, we perform de novo automated design of MRF pulse sequences by applying physics-inspired optimization heuristics. Our experimental data suggest that systematic errors dominate over random errors in MRF scans under clinically relevant conditions of high undersampling. Thus, in contrast to prior optimization efforts, which focused on statistical error models, we use a cost function based on explicit first-principles simulation of systematic errors arising from Fourier undersampling and phase variation. The resulting pulse sequences display features qualitatively different from previously used MRF pulse sequences and achieve fourfold shorter scan time than prior human-designed sequences of equivalent precision in [Formula: see text] and [Formula: see text] Furthermore, the optimization algorithm has discovered the existence of MRF pulse sequences with intrinsic robustness against shading artifacts due to phase variation.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Automatización , Encéfalo/diagnóstico por imagen , Simulación por Computador , Epilepsia/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen
2.
Rep Prog Phys ; 83(5): 054401, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32235066

RESUMEN

Quantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization problems of practical importance. However, many challenges have yet to be overcome before this goal can be reached. This perspectives article first gives a brief introduction to the concept of quantum annealing, and then highlights new pathways that may clear the way towards feasible and large scale quantum annealing. Moreover, since this field of research is to a strong degree driven by a synergy between experiment and theory, we discuss both in this work. An important focus in this article is on future perspectives, which complements other review articles, and which we hope will motivate further research.

3.
Phys Rev Lett ; 118(7): 070502, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28256849

RESUMEN

We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

4.
Phys Rev Lett ; 119(10): 100602, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949153

RESUMEN

The fractal dimension of excitations in glassy systems gives information on the critical dimension at which the droplet picture of spin glasses changes to a description based on replica symmetry breaking where the interfaces are space filling. Here, the fractal dimension of domain-wall interfaces is studied using the strong-disorder renormalization group method pioneered by Monthus [Fractals 23, 1550042 (2015)FRACEG0218-348X10.1142/S0218348X15500425] both for the Edwards-Anderson spin-glass model in up to 8 space dimensions, as well as for the one-dimensional long-ranged Ising spin-glass with power-law interactions. Analyzing the fractal dimension of domain walls, we find that replica symmetry is broken in high-enough space dimensions. Because our results for high-dimensional hypercubic lattices are limited by their small size, we have also studied the behavior of the one-dimensional long-range Ising spin-glass with power-law interactions. For the regime where the power of the decay of the spin-spin interactions with their separation distance corresponds to 6 and higher effective space dimensions, we find again the broken replica symmetry result of space filling excitations. This is not the case for smaller effective space dimensions. These results show that the dimensionality of the spin glass determines which theoretical description is appropriate. Our results will also be of relevance to the Gardner transition of structural glasses.

5.
Phys Rev Lett ; 115(7): 077201, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26317743

RESUMEN

Spin systems with frustration and disorder are notoriously difficult to study, both analytically and numerically. While the simulation of ferromagnetic statistical mechanical models benefits greatly from cluster algorithms, these accelerated dynamics methods remain elusive for generic spin-glass-like systems. Here, we present a cluster algorithm for Ising spin glasses that works in any space dimension and speeds up thermalization by at least one order of magnitude at temperatures where thermalization is typically difficult. Our isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-dimensional spin glasses and lead to a speedup over conventional state-of-the-art methods that increases with the system size. We illustrate the benefits of the isoenergetic cluster moves in two and three space dimensions, as well as the nonplanar chimera topology found in the D-Wave Inc. quantum annealing machine.

6.
Phys Rev Lett ; 111(17): 177202, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24206516

RESUMEN

Ferromagnetic Ising systems with competing interactions are considered in the presence of a random field. We find that in three space dimensions the ferromagnetic phase is disordered by a random field which is considerably smaller than the typical interaction strength between the spins. This is the result of a novel disordering mechanism triggered by an underlying spin-glass phase. Calculations for the specific case of the long-range dipolar LiHo(x)Y(1-x)F(4) compound suggest that the above mechanism is responsible for the peculiar dependence of the critical temperature on the strength of the random field and the broadening of the susceptibility peaks as temperature is decreased, as found in recent experiments by Silevitch et al.. [Nature (London) 448, 567 (2007)]. Our results thus emphasize the need to go beyond the standard Imry-Ma argument when studying general random-field systems.

7.
Phys Rev Lett ; 111(9): 097203, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24033067

RESUMEN

We investigate the conditions required for general spin systems with frustration and disorder to display self-organized criticality, a property which so far has been established only for the fully connected infinite-range Sherrington-Kirkpatrick Ising spin-glass model [Phys. Rev. Lett. 83, 1034 (1999)]. Here, we study both avalanche and magnetization jump distributions triggered by an external magnetic field, as well as internal field distributions in the short-range Edwards-Anderson Ising spin glass for various space dimensions between 2 and 8, as well as the fixed-connectivity mean-field Viana-Bray model. Our numerical results, obtained on systems of unprecedented size, demonstrate that self-organized criticality is recovered only in the strict limit of a diverging number of neighbors and is not a generic property of spin-glass models in finite space dimensions.

8.
Phys Rev Lett ; 109(17): 177204, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215219

RESUMEN

The three-dimensional Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied via large-scale Monte Carlo simulations at low temperatures, deep within the spin-glass phase. Performing a careful statistical analysis of several thousand independent disorder realizations and using an observable that detects peaks in the overlap distribution, we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly different low-temperature behavior. The structure of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its low-temperature phase has only a single pair of pure states.

9.
Phys Rev Lett ; 109(15): 155701, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102333

RESUMEN

An intriguing result of statistical mechanics is that a first-order phase transition can be rounded by disorder coupled to energylike variables. In fact, even more intriguing is that the rounding may manifest itself as a critical point, quantum or classical. In general, it is not known, however, what universality classes, if any, such criticalities belong to. In order to shed light on this question we examine in detail the disordered three-color Ashkin-Teller model by Monte Carlo methods. Extensive analyses indicate that the critical exponents define a new universality class. We show that the rounding of the first-order transition of the pure model due to the impurities is manifested as criticality. However, the magnetization critical exponent, ß, and the correlation length critical exponent, ν, are found to vary with disorder and the four-spin coupling strength, and we conclusively rule out that the model belongs to the universality class of the two-dimensional Ising model.

10.
Phys Rev E ; 104(3-2): 035302, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654070

RESUMEN

Optimization plays a significant role in many areas of science and technology. Most of the industrial optimization problems have inordinately complex structures that render finding their global minima a daunting task. Therefore, designing heuristics that can efficiently solve such problems is of utmost importance. In this paper we benchmark and improve the thermal cycling algorithm [Phys. Rev. Lett. 79, 4297 (1997)PRLTAO0031-900710.1103/PhysRevLett.79.4297] that is designed to overcome energy barriers in nonconvex optimization problems by temperature cycling of a pool of candidate solutions. We perform a comprehensive parameter tuning of the algorithm and demonstrate that it competes closely with other state-of-the-art algorithms such as parallel tempering with isoenergetic cluster moves, while overwhelmingly outperforming more simplistic heuristics such as simulated annealing.

11.
Phys Rev E ; 101(2-1): 023316, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168655

RESUMEN

We investigate the computational hardness of spin-glass instances on a square lattice, generated via a recently introduced tunable and scalable approach for planting solutions. The method relies on partitioning the problem graph into edge-disjoint subgraphs and planting frustrated, elementary subproblems that share a common local ground state, which guarantees that the ground state of the entire problem is known a priori. Using population annealing Monte Carlo, we compare the typical hardness of problem classes over a large region of the multidimensional tuning parameter space. Our results show that the problems have a wide range of tunable hardness. Moreover, we observe multiple transitions in the hardness phase space, which we further corroborate using simulated annealing and simulated quantum annealing. By investigating thermodynamic properties of these planted systems, we demonstrate that the harder samples undergo magnetic ordering transitions which are also ultimately responsible for the observed hardness transitions on changing the sample composition.

12.
Phys Rev E ; 101(5-1): 052102, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575320

RESUMEN

We propose the Wishart planted ensemble, a class of zero-field Ising models with tunable algorithmic hardness and specifiable (or planted) ground state. The problem class arises from a simple procedure for generating a family of random integer programming problems with specific statistical symmetry properties but turns out to have intimate connections to a sign-inverted variant of the Hopfield model. The Hamiltonian contains only 2-spin interactions, with the coupler matrix following a type of Wishart distribution. The class exhibits a classical first-order phase transition in temperature. For some parameter settings the model has a locally stable paramagnetic state, a feature which correlates strongly with difficulty in finding the ground state and suggests an extremely rugged energy landscape. We analytically probe the ensemble thermodynamic properties by deriving the Thouless-Anderson-Palmer equations and free energy and corroborate the results with a replica and annealed approximation analysis; extensive Monte Carlo simulations confirm our predictions of the first-order transition temperature. The class exhibits a wide variation in algorithmic hardness as a generation parameter is varied, with a pronounced easy-hard-easy profile and peak in solution time towering many orders of magnitude over that of the easy regimes. By deriving the ensemble-averaged energy distribution and taking into account finite-precision representation, we propose an analytical expression for the location of the hardness peak and show that at fixed precision, the number of constraints in the integer program must increase with system size to yield truly hard problems. The Wishart planted ensemble is interesting for its peculiar physical properties and provides a useful and analytically transparent set of problems for benchmarking optimization algorithms.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 046712, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19518385

RESUMEN

Contractor renormalization (CORE) is a real-space renormalization-group method to derive effective Hamiltionians for microscopic models. The original CORE method is based on a real-space decomposition of the lattice into small blocks and the effective degrees of freedom on the lattice are tensor products of those on the small blocks. We present an extension of the CORE method that overcomes this restriction. Our generalization allows the application of CORE to derive arbitrary effective models whose Hilbert space is not just a tensor product of local degrees of freedom. The method is especially well suited to search for microscopic models to emulate low-energy exotic models and can guide the design of quantum devices.

14.
Phys Rev E ; 100(4-1): 043311, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31770965

RESUMEN

Parallel tempering Monte Carlo has proven to be an efficient method in optimization and sampling applications. Having an optimized temperature set enhances the efficiency of the algorithm through more-frequent replica visits to the temperature limits. The approaches for finding an optimal temperature set can be divided into two main categories. The methods of the first category distribute the replicas such that the swapping ratio between neighboring replicas is constant and independent of the temperature values. The second-category techniques including the feedback-optimized method, on the other hand, aim for a temperature distribution that has higher density at simulation bottlenecks, resulting in temperature-dependent replica-exchange probabilities. In this paper, we compare the performance of various temperature setting methods on both sparse and fully connected spin-glass problems as well as fully connected Wishart problems that have planted solutions. These include two classes of problems that have either continuous or discontinuous phase transitions in the order parameter. Our results demonstrate that there is no performance advantage for the methods that promote nonuniform swapping probabilities on spin-glass problems where the order parameter has a smooth transition between phases at the critical temperature. However, on Wishart problems that have a first-order phase transition at low temperatures, the feedback-optimized method exhibits a time-to-solution speedup of at least a factor of two over the other approaches.

15.
Phys Rev E ; 99(6-1): 063314, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330750

RESUMEN

Although many efficient heuristics have been developed to solve binary optimization problems, these typically produce correlated solutions for degenerate problems. Most notably, transverse-field quantum annealing-the heuristic employed in current commercially available quantum annealing machines-has been shown to often be exponentially biased when sampling the solution space. Here we present an approach to sample ground-state (or low-energy) configurations for binary optimization problems. The method samples degenerate states with almost equal probability and is based on a combination of parallel tempering Monte Carlo with isoenergetic cluster moves. We illustrate the approach using two-dimensional Ising spin glasses, as well as spin glasses on the D-Wave Systems quantum annealer chimera topology. In addition, a simple heuristic to approximate the number of solutions of a degenerate problem is introduced.

16.
Phys Rev E ; 99(4-1): 043306, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31108684

RESUMEN

A wide variety of optimization techniques, both exact and heuristic, tend to be biased samplers. This means that when attempting to find multiple uncorrelated solutions of a degenerate Boolean optimization problem a subset of the solution space tends to be favored while, in the worst case, some solutions can never be accessed by the algorithm used. Here we present a simple postprocessing technique that improves sampling for any optimization approach, either quantum or classical. More precisely, starting from a pool of a few optimal configurations, the algorithm generates potentially new solutions via rejection-free cluster updates at zero temperature. Although the method is not ergodic and there is no guarantee that all the solutions can be found, fair sampling is typically improved. We illustrate the effectiveness of our method by improving the exponentially biased data produced by the D-Wave 2X quantum annealer [S. Mandrà et al., Phys. Rev. Lett. 118, 070502 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.070502], as well as data from three-dimensional Ising spin glasses. As part of the study, we also show that sampling is improved when suboptimal states are included and discuss sampling at a finite fixed temperature.

17.
Phys Rev E ; 97(3-1): 032104, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776053

RESUMEN

The fractal dimension of domain walls produced by changing the boundary conditions from periodic to antiperiodic in one spatial direction is studied using both the strong-disorder renormalization group algorithm and the greedy algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find that for five or fewer space dimensions, the fractal dimension is lower than the space dimension. This means that interfaces are not space filling, thus implying that replica symmetry breaking is absent in space dimensions fewer than six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization group results for the fractal dimension are in good agreement with essentially exact numerical results, but the small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our numerical results are consistent with this expectation.

18.
Phys Rev E ; 97(4-1): 043303, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758754

RESUMEN

We present a methodology for generating Ising Hamiltonians of tunable complexity and with a priori known ground states based on a decomposition of the model graph into edge-disjoint subgraphs. The idea is illustrated with a spin-glass model defined on a cubic lattice, where subproblems, whose couplers are restricted to the two values {-1,+1}, are specified on unit cubes and are parametrized by their local degeneracy. The construction is shown to be equivalent to a type of three-dimensional constraint-satisfaction problem known as the tiling puzzle. By varying the proportions of subproblem types, the Hamiltonian can span a dramatic range of typical computational complexity, from fairly easy to many orders of magnitude more difficult than prototypical bimodal and Gaussian spin glasses in three space dimensions. We corroborate this behavior via experiments with different algorithms and discuss generalizations and extensions to different types of graphs.

19.
NPJ Microgravity ; 4: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29644336

RESUMEN

Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.

20.
Phys Rev E ; 96(2-1): 023312, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28950503

RESUMEN

We introduce an algorithm to generate (not solve) spin-glass instances with planted solutions of arbitrary size and structure. First, a set of small problem patches with open boundaries is solved either exactly or with a heuristic, and then the individual patches are stitched together to create a large problem with a known planted solution. Because in these problems frustration is typically smaller than in random problems, we first assess the typical computational complexity of the individual patches using population annealing Monte Carlo, and introduce an approach that allows one to fine-tune the typical computational complexity of the patch-planted system. The scaling of the typical computational complexity of these planted instances with various numbers of patches and patch sizes is investigated and compared to random instances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA