Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 13(1): e1006063, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114397

RESUMEN

Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence. We directly determined the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly divergent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knockdowns have remarkably similar phenotypes in terms of viability and impact on morphology and trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis, and global proteomic analysis indicates an important role in maintaining the surface proteome. Taken together these data indicate additional exocyst functions in trypanosomes, which likely include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst the trypanosome exocyst has novel components, overall functionality appears conserved, and suggest that the unique subunit may provide therapeutic opportunities.


Asunto(s)
Endocitosis/fisiología , Trypanosoma brucei brucei/patogenicidad , Evolución Biológica , Western Blotting , Membrana Celular/metabolismo , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/fisiología , Proteómica , Proteínas Protozoarias/metabolismo
2.
PeerJ ; 11: e15630, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520260

RESUMEN

The ability of insulin to stimulate glucose transport in muscle and fat cells is mediated by the regulated delivery of intracellular vesicles containing glucose transporter-4 (GLUT4) to the plasma membrane, a process known to be defective in disease such as Type 2 diabetes. In the absence of insulin, GLUT4 is sequestered in tubules and vesicles within the cytosol, collectively known as the GLUT4 storage compartment. A subset of these vesicles, known as the 'insulin responsive vesicles' are selectively delivered to the cell surface in response to insulin. We have previously identified Syntaxin16 (Sx16) and its cognate Sec1/Munc18 protein family member mVps45 as key regulatory proteins involved in the delivery of GLUT4 into insulin responsive vesicles. Here we show that mutation of a key residue within the Sx16 N-terminus involved in mVps45 binding, and the mutation of the Sx16 binding site in mVps45 both perturb GLUT4 sorting, consistent with an important role of the interaction of these two proteins in GLUT4 trafficking. We identify Threonine-7 (T7) as a site of phosphorylation of Sx16 in vitro. Mutation of T7 to D impairs Sx16 binding to mVps45 in vitro and overexpression of T7D significantly impaired insulin-stimulated glucose transport in adipocytes. We show that both AMP-activated protein kinase (AMPK) and its relative SIK2 phosphorylate this site. Our data suggest that Sx16 T7 is a potentially important regulatory site for GLUT4 trafficking in adipocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sintaxina 16 , Humanos , Adipocitos , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Insulina/farmacología , Fosforilación , Sintaxina 16/metabolismo
3.
J Biol Chem ; 285(46): 35910-8, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20819953

RESUMEN

cAMP-dependent protein kinases are reversibly complexed with any of the four isoforms of regulatory (R) subunits, which contain either a substrate or a pseudosubstrate autoinhibitory domain. The human protein kinase X (PrKX) is an exemption as it is inhibited only by pseudosubstrate inhibitors, i.e. RIα or RIß but not by substrate inhibitors RIIα or RIIß. Detailed examination of the capacity of five PrKX-like kinases ranging from human to protozoa (Trypanosoma brucei) to form holoenzymes with human R subunits in living cells shows that this preference for pseudosubstrate inhibitors is evolutionarily conserved. To elucidate the molecular basis of this inhibitory pattern, we applied bioluminescence resonance energy transfer and surface plasmon resonance in combination with site-directed mutagenesis. We observed that the conserved αH-αI loop residue Arg-283 in PrKX is crucial for its RI over RII preference, as a R283L mutant was able to form a holoenzyme complex with wild type RII subunits. Changing the corresponding αH-αI loop residue in PKA Cα (L277R), significantly destabilized holoenzyme complexes in vitro, as cAMP-mediated holoenzyme activation was facilitated by a factor of 2-4, and lead to a decreased affinity of the mutant C subunit for R subunits, significantly affecting RII containing holoenzymes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mutación , Secuencia de Aminoácidos , Animales , Células COS , Dominio Catalítico/genética , Chlorocebus aethiops , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/química , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Humanos , Cinética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Trypanosoma brucei brucei/enzimología
4.
Biochem J ; 432(3): 575-84, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20923411

RESUMEN

hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.


Asunto(s)
Adenina/análogos & derivados , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Adenina/farmacología , Inhibidores de la Adenosina Desaminasa/farmacología , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Técnicas de Cultivo de Célula/métodos , Línea Celular , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteína Homeótica Nanog , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Células Madre Pluripotentes/citología , Sistemas de Mensajero Secundario/efectos de los fármacos , Antígenos Embrionarios Específico de Estadio/metabolismo , Relación Estructura-Actividad , Factores de Tiempo
5.
Cell Signal ; 19(10): 2024-34, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17614255

RESUMEN

Protein kinase A (PKA) isozymes are distinguishable by the inhibitory pattern of their regulatory (R) subunits with RI subunits containing a pseudophosphorylation P(0)-site and RII subunits being a substrate. Under physiological conditions, RII does not inhibit PrKX, the human X chromosome encoded PKA catalytic (C) subunit. Using a live cell Bioluminescence Resonance Energy Transfer (BRET) assay, Surface Plasmon Resonance (SPR) and kinase activity assays, we identified the P(0)-position of the R subunits as the determinant of PrKX autoinhibition. Holoenzyme formation only takes place with an alanine at position P(0), whereas RI subunits containing serine, phosphoserine or aspartate do not bind PrKX. Surprisingly, PrKX reversibly associates with RII when changing P(0) from serine to alanine. In contrast, PKA-Calpha forms holoenzyme complexes with all wildtype and mutant R subunits; however, holoenzyme re-activation by cAMP is severely affected. Only PKA type II or mutant PKA type I holoenzymes (P(0): Ser or Asp) are able to dissociate fully upon maximally elevated intracellular cAMP. The data are of particular significance for understanding PKA isoform-specific activation patterns in living cells.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Subunidad RIIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Holoenzimas/metabolismo , Homeostasis , Humanos , Isoenzimas/metabolismo , Cinética , Subunidades de Proteína/metabolismo , Resonancia por Plasmón de Superficie
6.
Mol Biol Cell ; 24(23): 3663-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109596

RESUMEN

Recently it was shown that both recycling endosome and endosomal sorting complex required for transport (ESCRT) components are required for cytokinesis, in which they are believed to act in a sequential manner to bring about secondary ingression and abscission, respectively. However, it is not clear how either of these complexes is targeted to the midbody and whether their delivery is coordinated. The trafficking of membrane vesicles between different intracellular organelles involves the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. Although membrane traffic is known to play an important role in cytokinesis, the contribution and identity of intracellular SNAREs to cytokinesis remain unclear. Here we demonstrate that syntaxin 16 is a key regulator of cytokinesis, as it is required for recruitment of both recycling endosome-associated Exocyst and ESCRT machinery during late telophase, and therefore that these two distinct facets of cytokinesis are inextricably linked.


Asunto(s)
Citocinesis , Sintaxina 16/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Espacio Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Mutación/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Telofase , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA