RESUMEN
Heterologous expression of nattokinase, a potent fibrinolytic enzyme, has been successfully carried out in various microorganisms. However, the successful expression of this enzyme as a soluble protein was not achieved in E. coli. This study delves into the expression of nattokinase in E. coli as a soluble protein followed by its biochemical characterization and functional analysis for fibrinolytic activity. E. coli BL21C41 and pET32a vector host strain with pGro7 protein chaperone induced with IPTG at 16 °C 180 rpm for 16 h enabled the production of recombinant nattokinase in soluble fraction. Enzymatic assays demonstrated its protease activity, while characterization revealed optimal catalytic conditions at 37 °C and pH 8.0, with remarkable stability over a broad pH range (6.0-10.0) and up to 50 °C. The kinetic constants were determined as follows: Km = 25.83 ± 3.43 µM, Vmax = 62.91 ± 1.68 µM/s, kcat = 38.45 ± 1.06 s-1, and kcat/Km = 1.49 × 106 M-1 s-1. In addition, the fibrinolytic activity of NK, quantified by the fibrin plate hydrolysis assay was 1038 ± 156 U/ml, with a corresponding specific activity of 1730 ± 260 U/mg and the assessment of clot lysis time on an artificial clot (1 mg) was found to be 51.5 ± 2.5 min unveiling nattokinase's fibrinolytic potential. Through molecular docking, a substantial binding energy of -6.46 kcal/mol was observed between nattokinase and fibrin, indicative of a high binding affinity. Key fibrin binding residues, including Ser300, Leu302, and Asp303, were identified and confirmed. These mutants affected specifically the fibrin binding and not the proteolytic activity of NK. This comprehensive study provides crucial conditions for the expression of protein in soluble form in E. coli and biochemical properties paving the way for future research and potential applications in medicine and biotechnology.
Asunto(s)
Escherichia coli , Fibrina , Proteínas Recombinantes , Subtilisinas , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrina/metabolismo , Fibrina/química , Subtilisinas/metabolismo , Subtilisinas/genética , Subtilisinas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Cinética , Fibrinólisis , Concentración de Iones de Hidrógeno , Unión Proteica , Expresión GénicaRESUMEN
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Asunto(s)
Rodopsina , ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Rodopsina/química , Modelos Moleculares , Mutación , Sodio/metabolismo , LuzRESUMEN
Staphylokinase (SAK), a potent fibrin-specific plasminogen activator secreted by Staphylococcus aureus, carries a pair of lysine at the carboxy-terminus that play a key role in plasminogen activation. The underlaying mechanism by which C-terminal lysins of SAK modulate its function remains unknown. This study has been undertaken to unravel role of C-terminal lysins of SAK in plasminogen activation. While deletion of C-terminal lysins (Lys135, Lys136) drastically impaired plasminogen activation by SAK, addition of lysins enhanced its catalytic activity 2-2.5-fold. Circular dichroism analysis revealed that C-terminally modified mutants of SAK carry significant changes in their beta sheets and secondary structure. Structure models and RING (residue interaction network generation) studies indicated that the deletion of lysins has conferred extensive topological alterations in SAK, disrupting vital interactions at the interface of SAK.plasmin complex, thereby leading significant impairment in its functional activity. In contrast, addition of lysins at the C-terminus enhanced its conformational flexibility, creating a stronger coupling at the interface of SAK.plasmin complex and making it more efficient for plasminogen activation. Taken together, these studies provided new insights on the role of C-terminal lysins in establishment of precise intermolecular interactions of SAK with the plasmin for the optimal function of activator complex.
Asunto(s)
Fibrinolisina , Lisina , Fibrinolisina/química , Plasminógeno/química , Activadores Plasminogénicos/químicaRESUMEN
The modulation of host's immune response plays an important role in the intracellular survival of Mycobacterium tuberculosis. The intracellular pathogen counteracts environmental stresses with help of the expression of several genes. The M. tuberculosis genome encodes several immune-modulatory proteins including PE (proline-glutamic acid)/PPE (proline-proline-glutamic acid) superfamily proteins. It is unclear how the unique PE/PPE proteins superfamily contributes to survival under different stress and pathophysiology conditions. Previously, we showed that PPE63 (Rv3539) has C-terminal esterase extension and was localized as a membrane attached and in extracellular compartment. Therefore, the probability of these proteins interacting with the host to modulate the host immune response cannot be ruled out. The physiological role of PPE63 was characterized by expressing the PPE63 in the M. smegmatis, a non-pathogenic strain intrinsically deficient of PPE63. The recombinant M. smegmatis expressing PPE63 altered the colony morphology, lipid composition, and integrity of the cell wall. It provided resistance to multiple hostile environmental stress conditions and several antibiotics. MS_Rv3539 demonstrated higher infection and intracellular survival in comparison to the MS_Vec in the PMA-differentiated THP-1 cells. The decreased intracellular level of ROS, NO, and expression of iNOS was observed in THP-1 cells upon infection with MS_Rv3539 in comparison to MS_Vec. Further, the decrease in expression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß and enhanced anti-inflammatory cytokines like IL-10, pointed toward its role in immune modulation. Overall this study suggested the role of Rv3539 in enhanced intracellular survival of M. smegmatis via cell wall modulation and altered immune response of host.
Asunto(s)
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Ácido Glutámico/metabolismo , Interacciones Huésped-Patógeno , Citocinas/metabolismo , Macrófagos/metabolismo , Línea Celular , Inmunidad , Pared CelularRESUMEN
BACKGROUND: Hormone-sensitive lipase (HSL) is a neutral lipase capable of hydrolysing various kinds of lipids. In comparison to single human Hormone Sensitive Lipase (hHSL), that is induced under nutritional stress, twelve serine hydrolases are annotated as HSL in Mycobacterium tuberculosis (mHSL). Mycobacterium is exposed to multiple stresses inside the host. Therefore, the present study was carried out to investigate if mHSL are also expressed under stress condition and if there is any correlation between various stress conditions and expression pattern of mHSL. METHODS AND RESULTS: The expression pattern of mHSL under different environmental conditions (in-vitro and ex-vivo) were studied using qRT-PCR in M. tuberculosis H37Ra strain with 16 S rRNA as internal control. Out of 12, only two genes (lipU and lipY) were expressed at very low level in mid log phase culture under aerobic conditions, while 9 genes were expressed at stationary phase of growth. Ten mHSLs were expressed post-infection under ex-vivo conditions in time dependent manner. LipH and lipQ did not express at any time point under ex-vivo condition. The relative expression of most of the genes under individual stress was much higher than observed in ex-vivo conditions. The expression pattern of genes varied with change in stress condition. CONCLUSIONS: Different sets of mHSL genes were expressed under different individual stress conditions pointing towards the requirement of different mHSL to combat different stress conditions. Overall, most of the mHSLs have demonstrated stress dependent expression pointing towards their role in intracellular survival of mycobacteria.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Lipasa/genética , Lipasa/metabolismo , Mycobacterium tuberculosis/metabolismo , Esterol Esterasa/metabolismo , Tuberculosis/microbiologíaRESUMEN
Proteorhodopsin (PR) is a highly abundant, pentameric, light-driven proton pump. Proton transfer is linked to a canonical photocycle typical for microbial ion pumps. Although the PR monomer is able to undergo a full photocycle, the question arises whether the pentameric complex formed in the membrane via specific cross-protomer interactions plays a role in its functional mechanism. Here, we use dynamic nuclear polarization (DNP)-enhanced solid-state magic-angle spinning (MAS) NMR in combination with light-induced cryotrapping of photointermediates to address this topic. The highly conserved residue H75 is located at the protomer interface. We show that it switches from the (τ)- to the (π)-tautomer and changes its ring orientation in the M state. It couples to W34 across the oligomerization interface based on specific His/Trp ring orientations while stabilizing the pKa of the primary proton acceptor D97 within the same protomer. We further show that specific W34 mutations have a drastic effect on D97 and proton transfer mediated through H75. The residue H75 defines a cross-protomer Asp-His-Trp triad, which potentially serves as a pH-dependent regulator for proton transfer. Our data represent light-dependent, functionally relevant cross talk between protomers of a microbial rhodopsin homo-oligomer.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsinas Microbianas , Histidina/química , Histidina/metabolismo , Isomerismo , Modelos Moleculares , Subunidades de Proteína/química , Secuencias Repetitivas de Aminoácido , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/ultraestructura , Triptófano/química , Triptófano/metabolismoRESUMEN
Pseudogenes, the debilitated parts of ancient genes, were previously scrapped off as junk or discarded genes with no functional significance. Pseudogenes have come under scrutiny for their functionality, since recent studies have unveiled their importance in the regulation of their corresponding parent genes and various biological mechanisms. Despite the enormous occurrence of pseudogenes in plants, the lack of experimental validation has contributed toward their unresolved roles in gene regulation. Contrarily, most of the studies associated with gene regulation have been mainly reported for humans, mice, and other mammalian genomes. Consequently, in order to present a cumulative report on plant-based pseudogenes research, an attempt has been made to assemble multiple studies presenting the pseudogene classification, the prediction and the determination of comparative accuracies of various computational pipelines, and recent trends in analyzing their biological functions, and regulatory mechanisms. This review represents the classical, as well as the recent advances on pseudogene identification and their potential roles in transcriptional regulation, which could possibly invigorate the quality of genome annotation, evolutionary analysis, and complexity surrounding the regulatory pathways in plants. Thus, when the ambiguous boundary girdling the pseudogenes eventually recedes on account of their explicit orchestration role, research in flora would no longer saunter compared to that on fauna.
Asunto(s)
Genoma , Seudogenes , Animales , Evolución Biológica , Regulación de la Expresión Génica , Ratones , Seudogenes/genéticaRESUMEN
Staphylokinase (SAK), a 136 amino acid bacterial protein with profibrinolytic properties, has emerged as an important thrombolytic agent because of its fibrin specificity and reduced inhibition by α-2 antiplasmin. In an attempt to enhance the clot dissolution ability of SAK, a 30 amino acid peptide (VEK-30) derived from a plasminogen (Pg) binding protein (PAM), was fused at the C-terminal end of SAK with a RGD (Arg-Gly-Asp) linker. The chimeric protein, SAKVEK, was expressed in E. coli and purified as a soluble protein. Pg activation by equimolar complexes of SAKVEK and SAK with plasmin revealed that the fusion of VEK-30 peptide has significantly enhanced the catalytic activity of SAK. The kinetic constant, kcat /Km , of SAKVEK for the substrate Pg appeared 2.7 times higher than that of SAK and the time required for the fibrin and platelet rich clot lysis was shortened by 30% and 50%, respectively. The binary activator complex of SAKVEK with plasmin gets inhibited by α2- antiplasmin but remains protected in the presence of fibrin, very similar to SAK. Thus, the present study suggests that SAKVEK is more potent and effective as a thrombolytic agent due to its higher catalytic activity for Pg activation in a fibrin-specific manner and its ability to clear platelet-rich plasma clot faster than SAK.
Asunto(s)
Fibrinólisis/efectos de los fármacos , Metaloendopeptidasas/farmacología , Péptidos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Humanos , Péptidos/química , Péptidos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genéticaRESUMEN
In hepatocellular carcinoma (HCC), the poor response to the chemotherapeutic agents is partially attributed to the chemoresistance property of cancer stem cells (CSCs). NOTCH signaling pathway plays a crucial role in the chemoresistance through the maintenance of the CSCs. We observed that the NOTCH pathway was activated in HCC CD133+ cells treated with vincristine (VIN)1 and 5-fluorouracil (5-FU)2. Therefore, we examined whether inhibition of the NOTCH can improve sensitization of HCC CD133+ cells to VIN and 5-FU. The Huh7 cell line was pre-incubated γ-secretase DAPT, as a NOTCH inhibitor, and then treated with IC50 dose of VIN or 5-FU. The CD133+ cells were then isolated and analyzed for the cell viability, apoptosis, migration and spheroid formation capacities, and gene and protein expression. It was observed that pre-incubation with DAPT significantly downregulated the expression of NOTCH-related genes and led to a significant reduction in VIN- and 5-FU-CD133+ population. In addition, DAPT pre-incubated VIN- and 5-FU-treated-CD133+ cells formed fewer spheroids in 3D culture and had a lesser migration capacity in 2D culture. Importantly, DAPT enhanced the apoptosis rate of VIN- and 5-FU-treated CD133+ cells for 3- and 2-fold, which was correlated with the enhanced expression of pro-apoptotic BBC3 (BCL-2-binding component 3) and decreased expression of HES1 that was reported to regulate BBC3 negatively. Collectively, it was observed that NOTCH inhibition sensitized the HCC CD133+ cells to VIN and 5-FU through enhancing BBC3-mediated apoptosis. The results highlighted the role of NOTCH/HES1/BBC3 axis in resistance of CD133+ cells to VIN and 5-FU. Understanding the molecular mechanisms underlying chemoresistance in HCC CD133+ cells may help in designing the novel targeted therapies to chemosensitize them.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Fluorouracilo/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Vincristina/farmacología , Antígeno AC133/metabolismo , Antineoplásicos/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Receptores Notch/antagonistas & inhibidores , Factor de Transcripción HES-1/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Saussurea lappa (family Asteraceae) possesses immense pharmacological potential mainly due to the presence of sesquiterpene lactones. In spite of its medicinal importance, S. lappa has been poorly explored at the molecular level. We initiated leaf transcriptome sequencing of S. lappa using the illumina highseq 2000 platform and generated 62,039,614 raw reads. Trinity assembler generated 122,434 contigs with an N50 value of 1053â¯bp. The assembled transcripts were compared against the non-redundant protein database at NCBI. The Blast2GO analysis assigned gene ontology (GO) terms, categorized into molecular functions (3132), biological processes (4477) and cellular components (1.927). Using KEGG, around 476 contigs were assigned to 39 pathways. For secondary metabolic pathways, we identified transcripts encoding genes involved in sesquiterpenoid and flavonoid biosynthesis. Relatively low number of transcripts were also found encoding for genes involved in the alkaloid pathway. Our data will contribute to functional genomics and metabolic engineering studies in this plant.
Asunto(s)
Vías Biosintéticas/genética , Flavonoides/biosíntesis , Hojas de la Planta/genética , Proteínas de Plantas/genética , Saussurea/genética , Sesquiterpenos/metabolismo , Transcriptoma , Flavonoides/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Saussurea/crecimiento & desarrollo , Saussurea/metabolismoRESUMEN
Krokinobacter eikastus rhodopsin 2 (KR2) is a pentameric, light-driven ion pump, which selectively transports sodium or protons. The mechanism of ion selectivity and transfer is unknown. By using conventional as well as dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyse the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the KR2 resting state. In addition, 50% of the KR2 13C and 15N resonances could be assigned by multidimensional high-field solid-state NMR experiments. Assigned residues include part of the NDQ motif as well as sodium binding sites. Based on these data, the structural effects of the H30A mutation, which seems to shift the ion selectivity of KR2 primarily to Na+, could be analysed. Our data show that it causes long-range effects within the retinal binding pocket and at the extracellular Na+ binding site, which can be explained by perturbations of interactions across the protomer interfaces within the KR2 complex. This study is complemented by data from time-resolved optical spectroscopy.
Asunto(s)
Proteínas Bacterianas/genética , Flavobacteriaceae/genética , Espectroscopía de Resonancia Magnética/métodos , Mutación , Rodopsinas Microbianas/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flavobacteriaceae/metabolismo , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
Dendrocalamus hamiltonii is a giant bamboo species native to Indian subcontinent with high economic importance. Nevertheless, highly outcross nature and flowering once in decades impose severe limitation in its propagation. Identification and mixed cultivation of genetically diverse genotypes may assist successful breeding and natural recombination of desirable traits. Characterization of existing genetic diversity and population structure are indispensable for efficient implementation of such strategies, which is facing a major challenge due to non-availability of sequence-based markers for the species. In this study, 8121 EST-SSR markers were mined from D. hamiltonii transcriptome data. Among all, tri-repeats were most represented (52%), with the abundance of CCG/CGG repeat motif. A set of 114 polymorphic markers encompassing epigenetic regulators, transcription factors, cell cycle regulators, signaling, and cell wall biogenesis, detected polymorphism and interaction (in silico) with important genes, that might have role in bamboo growth and development. Genetic diversity and population structure of the three D. hamiltonii populations (72 individuals) revealed moderate to high-level genetic diversity (mean alleles per locus: 5.8; mean PIC: 0.44) using neutral EST-SSR markers. AMOVA analysis suggests maximum diversity (59%) exists within population. High genetic differentiation (Gst = 0.338) and low gene flow (Nm = 0.49) were evident among populations. Further, PCoA, dendrogram, and Bayesian STRUCTURE analysis clustered three populations into two major groups based on geographical separations. In future, SSR marker resources created can be used for systematic breeding and implementation of conservation plans for sustainable utilization of bamboo complex.
Asunto(s)
Etiquetas de Secuencia Expresada , Variación Genética , Genotipo , Repeticiones de Microsatélite , Poaceae/genéticaRESUMEN
Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.2, and through host-induced gene silencing (HIGS) of aflM and aflP genes from the aflatoxin biosynthetic pathway. While the former improves genetic resistance to A. flavus infection, the latter inhibits aflatoxin production in the event of infection providing durable resistance against different Aspergillus flavus morphotypes and negligible aflatoxin content in several peanut events/lines well. A strong positive correlation was observed between aflatoxin accumulation and decline in transcription of the aflatoxin biosynthetic pathway genes in both OE-Def and HIGS lines. Transcriptomic signatures in the resistant lines revealed key mechanisms such as regulation of aflatoxin synthesis, its packaging and export control, besides the role of reactive oxygen species-scavenging enzymes that render enhanced protection in the OE and HIGS lines. This is the first study to demonstrate highly effective biotechnological strategies for successfully generating peanuts that are near-immune to aflatoxin contamination, offering a panacea for serious food safety, health and trade issues in the semi-arid regions.
Asunto(s)
Aflatoxinas/metabolismo , Arachis/microbiología , Aspergillus/química , Defensinas/metabolismo , Contaminación de Alimentos/prevención & control , Aspergillus flavus/química , Biotecnología , Defensinas/genética , Inocuidad de los Alimentos , Silenciador del Gen , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , TranscriptomaRESUMEN
In order to design proteins with improved properties i.e. thermostability, catalytic efficiency and to understand the mechanisms underlying, a thermostable variant of Bacillus lipase was generated by site-directed mutagenesis with enhanced thermal (∆Tm = + 12 °C) and chemical (∆Cm denaturation for Gdmcl = + 1.75 M) stability as compared to WT. Arg153-His variant showed 72-fold increase in thermostability (t 1/2 = 6 h) at 60 °C as compared to WT (t 1/2 = 5 min). Increase in thermostability might be contributed by the formation of additional hydrogen bonds between His153/AO-Arg106/ANH2 as well as His153-Arg106/ANE. The variant demonstrated broad substrate specificity. A maximum conversion of 59 and 62% was obtained for methyl oleate and methyl butyrate, respectively, using immobilized variant lipase, whereas immobilized WT enzyme synthesizes 35% methyl oleate. WT enzyme was unable to synthesize methyl butyrate as it showed negligible activity with pNP-butyrate.
Asunto(s)
Bacillus , Calor , Lipasa , Ácidos Oléicos , Mutación Puntual , Sustitución de Aminoácidos , Bacillus/enzimología , Bacillus/genética , Butiratos/síntesis química , Butiratos/química , Estabilidad de Enzimas/genética , Lipasa/química , Lipasa/genética , Ácidos Oléicos/síntesis química , Ácidos Oléicos/químicaRESUMEN
The genome sequence of Mycobacterium tuberculosis revealed the presence of several hydrolases involved in lipid metabolism including the members of Lip gene family. Rv0646c (LipG) is one of them. It is annotated as putative esterase/lipase because of the presence of consensus sequence 'GXSXG.' The gene was cloned, expressed, and purified in E. coli. It showed 22 U/mg specific activity with pNP-butyrate as a preferred substrate. However, it actively worked on substrates with short chain. The enzyme was optimally active at 50 °C/pH 8.0 and also stable up to 50 °C and in a lower pH range (pH 6-8). The Km, Vmax, and catalytic efficiency of the enzyme were calculated to be 500 µM, 58.82 µmoles/min/ml, and 3.92 µM/min, respectively. Homology modeling of Rv0646c revealed the presence of a canonical putative catalytic triad (Ser123, His279, and Asp251). The esterase activity was abolished in the presence of serine hydrolase inhibitors, THL and PMSF. Various antigenic epitopes were predicted in Rv0646c. The protein mounted significantly high antibody response against the sera of extrapulmonary and MDR-TB patients. Rv0646c up-regulated the production of various pro-inflammatory cytokines (TNF-α and IFN-γ), chemokine (IL-8), and nitric oxide in THP-1-derived macrophages. The secretion of IL-6 from macrophages was also found to be elevated in response to Rv0646c. The treatment resulted in the increased level of reactive oxygen species. Conclusively, Rv0646c could be classified as esterase having vast immunogenic property by eliciting strong humoral response as well as cell-mediated immunity.
Asunto(s)
Proteínas Bacterianas/inmunología , Citocinas/inmunología , Esterasas/inmunología , Inmunidad Innata , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Regulación hacia Arriba/inmunología , Humanos , Macrófagos/microbiología , Macrófagos/patología , Células THP-1RESUMEN
Fluoroquinolones are among the most important classes of highly effective antibacterial drugs, exhibiting wide range of activity to cure infectious diseases. Ofloxacin is second generation fluoroquinolone approved by FDA for the treatment of tuberculosis by selectively inhibiting DNA gyrase. However, the emergence of drug resistance owing to mutations in DNA gyrase poses intimidating challenge for the effective therapy of this drug. The double mutants GyrAA90V GyrBD500N and GyrAA90V GyrBT539N are reported to be implicated in conferring higher levels of OFX resistance. The present study was designed to unravel the molecular principles behind development of resistance by the bug against fluoroquinolones. Our results highlighted that polar interactions play critical role in the development of drug resistance and highlight the significant correlation between the free energy calculations predicted by MM-PBSA and stability of the ligand-bound complexes. Modifications at the OFX binding pocket due to amino acid substitution leads to fewer hydrogen bonds in mutants DNA gyrase-OFX complex, which determined the low susceptibility of the ligand in inhibiting the mutant protein. This study provides a structural rationale to the mutation-based resistance to ofloxacin and will pave way for development potent fluoroquinolone-based resistant-defiant drugs. J. Cell. Biochem. 118: 2950-2957, 2017. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Proteínas Bacterianas , Girasa de ADN , Farmacorresistencia Bacteriana/genética , Mutación Missense , Mycobacterium tuberculosis , Ofloxacino , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Girasa de ADN/genética , Girasa de ADN/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genéticaRESUMEN
Proteorhodopsin (PR) is the most abundant retinal protein on earth and functions as a light-driven proton pump. Despite extensive efforts, structural data for PR photointermediate states have not been obtained. On the basis of dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyze the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the ground state in comparison to light-induced, cryotrapped K- and M-states. A high M-state population could be achieved by preventing reprotonation of the Schiff base through a mutation of the primary proton donor (E108Q). Our data reveal unexpected large and alternating 13C chemical shift changes in the K-state propagating away from the Schiff base along the polyene chain. Furthermore, two different M-states have been observed reflecting the Schiff base reorientation after the deprotonation step. Our study provides novel insight into the photocycle of PR and also demonstrates the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models.
Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Bombas de Protones/química , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/efectos de la radiación , Bases de Schiff/químicaRESUMEN
Truncated hemoglobins (trHbs) are considered the most primitive members of globin superfamily and traditionally exist as a single domain heme protein in three distinct structural organizations, type I (trHb1_N), type II (trHb2_O) and type III (trHb3_P). Our search of microbial and lower eukaryotic genomes revealed a broad array of multidomain organization, representing multiunit and chimeric forms of trHbs, where multiple units of trHbs are joined together and/or integrated with distinct functional domains. Globin motifs of these multidomain trHbs were from all three groups of trHbs and unambiguously assigned to trHb1_N, trHb2_O and trHb3_P. Multiunit and chimeric forms of trHb1_N were identified exclusively in ciliated protozoan parasites, where multiple units of trHb are integrated in tandem and/or fused with another redox active or signalling domain, presenting an interesting example of gene duplication and fusion in lower eukaryotes. In contrast, trHb2_O and trHb3_P trHbs were found only in bacteria in two or multidomain organization, where amino or carboxy terminus of trHb unit is integrated with different redox-active or oxidoreductase domains. The identification of these new multiunit and chimeric trHbs and their specific phyletic distribution presents an interesting and challenging finding to explore and understand complex functionalities of these novel multidomain trHbs. © 2017 IUBMB Life, 69(7):479-488, 2017.
Asunto(s)
Proteínas Bacterianas/química , Hemoglobinas Truncadas/química , Simulación por Computador , Evolución Molecular , Modelos Moleculares , Dominios Proteicos , Proteínas Protozoarias/químicaRESUMEN
Tuberculosis, one of the leading cause of death from infectious diseases, is caused by Mycobacterium tuberculosis. The genome of M. tuberculosis has been sequenced and nearly 40% of the whole genome sequence was categorized as hypothetical. Rv0774c was annotated as membrane exported hypothetical protein in TB database. In silico analysis revealed that Rv0774c is a paralog of PE-PGRS multi gene family with 100 aa N-terminal domain similar to PE domain of PE-PGRS proteins. Its C-terminal domain is quite different from PGRS domain, having characteristic lipase signature GXSXG & HG and catalytic residues predicted for lipolytic activity. Therefore, DNA coding for Rv0774c (303 aa), its N-terminal (1-100 aa) and C- terminal domain (100-303 aa) were separately cloned from M. tuberculosis and were over expressed in E. coli. Rv0774c gene and its C-terminal lipolytic domain preferably hydrolyzed short chain esters. Though no enzyme activity was observed in N-terminus PE like domain, it was demonstrated to enhance the thermostability of full length Rv0774c. Tetrahydrolipstatin inhibited the enzyme activity and predicted catalytic residues (Ser-185, Asp-255 and His-281) were confirmed by site directed mutagenesis. Rv0774c was secreted out in culture media by M. tuberculosis and was up-regulated in iron limiting conditions. Treatment of THP-1 cells with rRv0774c resulted in a decline in the LPS induced production of NO and expression of iNOS. rRv0774c treated THP-1 cells also showed an enhanced expression of IL-10 and TLR2. On contrary, it suppressed the LPS induced production of IL-12, chemokines MCP-1 and IL-8. Rv0774c inhibited the LPS induced phosphorylation of p38. These observations suggested that Rv0774c could modulate the pro-inflammatory immune response to support intracellular survival of the mycobacterium.
Asunto(s)
Proteínas Bacterianas/metabolismo , Citocinas/antagonistas & inhibidores , Esterasas/metabolismo , Terapia de Inmunosupresión , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/fisiología , Receptor Toll-Like 2/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Línea Celular , Clonación Molecular , Análisis Mutacional de ADN , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Esterasas/química , Esterasas/genética , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Lipopolisacáridos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/inmunología , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato , TemperaturaRESUMEN
Mycobacterium tuberculosis (MTB), an intracellular pathogen, still represents a major global health challenge. A number of mycobacterial macromolecules have been shown to target biological processes within host macrophages; however, the exact mechanism for the majority of these host pathogen interactions is still poorly understood. Moreover, the lipid metabolic pathway is one of the most important physiologic pathways that plays a vital role in the survival and infection of Mycobacterium tuberculosis. In present study, we investigated the effect of rLipQ from Mycobacterium tuberculosis H37Rv on macrophage functions in vitro.Our results demonstrate that rLipQ significantly lowers the expression level of pro-inflammatory cytokines (TNF-α& IFN-γ) and augments the level of anti inflammatory cytokines such as IL-4 & IL-10as compared to LPS stimulated macrophages. An up-regulation of anti-inflammatory and down-regulation of pro-inflammatory cytokines levels in rLipQ pretreated macrophages implies immuno-modulatory functions in TB patients. Interestingly, rLipQ also inhibited the expression of iNOS, TLR-2 and transcription factor NF-kB in LPS stimulated macrophages whereas the expression of TLR-4 remains unchanged. The inhibition in the expression of these signaling molecules has been correlated to the inhibition of NO production in macrophages. Taken together, these studies demonstrate that rLipQ is a novel lipase that is highly immunogenic and may play an important role in the virulence and pathogenesis of M. tuberculosis infection, by altering the balance of cytokines, which might help to assess prognosis and contribute to a better understanding against host-pathogen interactions.