Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 48(5): 4009-4019, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34136985

RESUMEN

ß-blockers having specific affinities to ß-adrenergic receptors are routinely used to treat cardiovascular problems. Additionally, it has been demonstrated that these drugs can be effective in treating apoptosis-related diseases. The current study was conducted to investigate the cytotoxic and apoptotic effects of ß-1 selective esmolol, ß-2 selective ICI-118,551, and non-selective nadolol blockers on the cancerous and healthy lung cells. MTT test was used to evaluate cytotoxicity. Apoptotic actions were examined by using Annexin V-FITC/PI assay, JC-1 staining, ROS test, and the determination of the caspase-4 and -9, Bcl-2, Bax, Bax/Bcl-2, and JNK levels. Although the MRC-5 showed greater resistance than A549 cells, the ß-blockers at 150-250 µM exhibited different levels of cytotoxic effect on both lung cell lines. Esmolol was found to be the most ineffective blocker and the increases in Bcl-2 protein levels were appeared to be effective in resistance to this drug. The increases in reactive oxygen species (ROS) together with the increase in caspase-4 and Bax protein levels have been shown to play a role in ICI-118,551 induced lung cell death. Nadolol was the most effective blocker increasing the total apoptotic cell population in both lung cells, which was based on both mitochondrial and endoplasmic reticulum stress. When the selectivities of the ß-blockers are considered, it seems that ß-2 specific antagonism predominantly mediated the death of lung cells, and the overwhelming factors causing apoptosis mainly varied depending on the selectivity of the blockers.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Neoplasias Pulmonares/metabolismo , Pulmón/efectos de los fármacos , Células A549 , Antagonistas Adrenérgicos beta/toxicidad , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Pulmón/citología , Pulmón/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Prep Biochem Biotechnol ; 51(1): 96-103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32684091

RESUMEN

Boron is one of the most important elements with its indisputable biological importance and widespread use. The most studied derivatives of the boron element are boric acid and its salts. In this article, we searched the effects of boric acid and its lithium salt, lithium metaborate, on enzymatic defense system, cell damage, and cell surface morphology of Saccharomyces cerevisiae BY4741 strain. It was found that while all studied concentrations of boric acid showed toxicity against the yeast, even the highest studied concentration of lithium metaborate could not effectively inhibit cell viability. In addition, we observed reverse effect of lithium metaborate depend on its concentration on yeast cell proliferation and metabolic activity. As a defense mechanism, superoxide dismutase and glutathione S-transferase activities were significantly induced in yeast cells treated with boric acid. But these inductions could not protect cells from boric acid induced lipid peroxidation. It was determined that glutathione S-transferase was the only enzyme induced after lithium metaborate treatment. Finally, we visualized the signs of features of necrotic and early apoptotic mechanisms in yeast cells treated with boric acid and lithium metaborate, respectively, which should be investigated with further studies.


Asunto(s)
Antioxidantes/farmacología , Boratos/farmacología , Ácidos Bóricos/farmacología , Compuestos de Litio/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo
3.
Talanta ; 276: 126248, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776770

RESUMEN

Antifungal medications are important due to their potential application in cancer treatment either on their own or with traditional treatments. The mechanisms that prevent the effects of these medications and restrict their usage in cancer treatment are not completely understood. The evaluation and discrimination of the possible protective effects of the anti-apoptotic members of the Bcl-2 family of proteins, critical regulators of mitochondrial apoptosis, against antifungal drug-induced cell death has still scientific uncertainties that must be considered. Novel, simple, and reliable strategies are highly demanded to identify the biochemical signature of this phenomenon. However, the complex nature of cells poses challenges for the analysis of cellular biochemical changes or classification. In this study, for the first time, we investigated the probable protective activities of Bcl-2 and Mcl-1 proteins against cell damage induced by ketoconazole (KET) and fluconazole (FLU) antifungal drugs in a yeast model through surface-enhanced Raman spectroscopy (SERS) approach. The proposed SERS platform created robust Raman spectra with a high signal-to-noise ratio. The analysis of SERS spectral data via advanced unsupervised and supervised machine learning methods enabled unquestionable differentiation (100 %) in samples and biomolecular identification. Various SERS bands related to lipids and proteins observed in the analyses suggest that the expression of these anti-apoptotic proteins reduces oxidative biomolecule damage induced by the antifungals. Also, cell viability assay, Annexin V-FITC/PI double staining, and total oxidant and antioxidant status analyses were performed to support Raman measurements. We strongly believe that the proposed approach paves the way for the evaluation of various biochemical structures/changes in various cells.


Asunto(s)
Antifúngicos , Fluconazol , Cetoconazol , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2 , Saccharomyces cerevisiae , Espectrometría Raman , Cetoconazol/farmacología , Antifúngicos/farmacología , Espectrometría Raman/métodos , Fluconazol/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/análisis , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA