Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8003): 358-366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418885

RESUMEN

Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses µ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of µ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.


Asunto(s)
Astrocitos , Cuerpo Estriado , Rumiación Cognitiva , Cristalinas mu , Animales , Humanos , Ratones , Astrocitos/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Edición Génica , Técnicas de Inactivación de Genes , Cristalinas mu/deficiencia , Cristalinas mu/genética , Cristalinas mu/metabolismo , Rumiación Cognitiva/fisiología , Transmisión Sináptica , Sistemas CRISPR-Cas , Neuronas Espinosas Medianas/metabolismo , Sinapsis/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Terminales Presinápticos/metabolismo , Inhibición Neural
2.
Proc Natl Acad Sci U S A ; 120(34): e2301880120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579160

RESUMEN

Skin is the largest human organ with easily noticeable biophysical manifestations of aging. As human tissues age, there is chronological accumulation of biophysical changes due to internal and environmental factors. Skin aging leads to decreased elasticity and the loss of dermal matrix integrity via degradation. The mechanical properties of the dermal matrix are maintained by fibroblasts, which undergo replicative aging and may reach senescence. While the secretory phenotype of senescent fibroblasts is well studied, little is known about changes in the fibroblasts biophysical phenotype. Therefore, we compare biophysical properties of young versus proliferatively aged primary fibroblasts via fluorescence and traction force microscopy, single-cell atomic force spectroscopy, microfluidics, and microrheology of the cytoskeleton. Results show senescent fibroblasts have decreased cytoskeletal tension and myosin II regulatory light chain phosphorylation, in addition to significant loss of traction force. The alteration of cellular forces is harmful to extracellular matrix homeostasis, while decreased cytoskeletal tension can amplify epigenetic changes involved in senescence. Further exploration and detection of these mechanical phenomena provide possibilities for previously unexplored pharmaceutical targets against aging.


Asunto(s)
Senescencia Celular , Piel , Humanos , Anciano , Senescencia Celular/genética , Células Cultivadas , Envejecimiento , Fibroblastos/metabolismo
3.
Am J Med Genet A ; 194(6): e63514, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329159

RESUMEN

Genetics has become a critical component of medicine over the past five to six decades. Alongside genetics, a relatively new discipline, dysmorphology, has also begun to play an important role in providing critically important diagnoses to individuals and families. Both have become indispensable to unraveling rare diseases. Almost every medical specialty relies on individuals experienced in these specialties to provide diagnoses for patients who present themselves to other doctors. Additionally, both specialties have become reliant on molecular geneticists to identify genes associated with human disorders. Many of the medical geneticists, dysmorphologists, and molecular geneticists traveled a circuitous route before arriving at the position they occupied. The purpose of collecting the memoirs contained in this article was to convey to the reader that many of the individuals who contributed to the advancement of genetics and dysmorphology since the late 1960s/early 1970s traveled along a journey based on many chances taken, replying to the necessities they faced along the way before finding full enjoyment in the practice of medical and human genetics or dysmorphology. Additionally, and of equal importance, all exhibited an ability to evolve with their field of expertise as human genetics became human genomics with the development of novel technologies.


Asunto(s)
Genética Médica , Humanos , Historia del Siglo XX , Historia del Siglo XXI , Genética Humana
4.
Appl Microbiol Biotechnol ; 108(1): 284, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573322

RESUMEN

SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.


Asunto(s)
Bioensayo , Oligonucleótidos , Control de Calidad , Temperatura
5.
Nucleic Acids Res ; 50(10): 5443-5466, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35061895

RESUMEN

Although recent regulatory approval of splice-switching oligonucleotides (SSOs) for the treatment of neuromuscular disease such as Duchenne muscular dystrophy has been an advance for the splice-switching field, current SSO chemistries have shown limited clinical benefit due to poor pharmacology. To overcome limitations of existing technologies, we engineered chimeric stereopure oligonucleotides with phosphorothioate (PS) and phosphoryl guanidine-containing (PN) backbones. We demonstrate that these chimeric stereopure oligonucleotides have markedly improved pharmacology and efficacy compared with PS-modified oligonucleotides, preventing premature death and improving median survival from 49 days to at least 280 days in a dystrophic mouse model with an aggressive phenotype. These data demonstrate that chemical optimization alone can profoundly impact oligonucleotide pharmacology and highlight the potential for continued innovation around the oligonucleotide backbone. More specifically, we conclude that chimeric stereopure oligonucleotides are a promising splice-switching modality with potential for the treatment of neuromuscular and other genetic diseases impacting difficult to reach tissues such as the skeletal muscle and heart.


Asunto(s)
Distrofia Muscular de Duchenne , Oligonucleótidos Antisentido/química , Oligonucleótidos Fosforotioatos/química , Animales , Exones , Ratones , Músculo Esquelético , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Fosforotioatos/farmacología , Empalme del ARN/efectos de los fármacos
6.
Public Health ; 230: 138-148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547760

RESUMEN

OBJECTIVES: Front-of-pack warning labels may reduce consumption of sugar-sweetened beverages, potentially mitigating negative health outcomes. Comparisons between different warning label types to inform future research and policy directions are lacking. This study compared 27 warning labels across six message types for their potential to reduce sugar-sweetened beverage consumption. DESIGN AND METHODS: A national sample of regular soda (n = 2578) and juice (n = 1048) consumers aged 14-60 years participated in an online survey. Participants evaluated randomly allocated labels; one from each of six warning label sets (health-graphic, sugar-pictogram, sugar-text, exercise equivalents, health-text, energy information) on four measures of perceived effectiveness (PE: overall effectiveness, discourage from drinking, emotional response, persuasive potential). Participants could also provide open comments. A general linear model compared differences in mean scores across label sets for each measure of PE. RESULTS: PE ratings differed significantly between label sets. Labels clearly quantifying sugar content (sugar-teaspoons) received consistently high PE ratings, whereas 'high in sugar' labels did not. Health-graphic labels were rated highly across all PE measures except persuasive potential. Exercise labels only rated highly on persuasive potential. Health-text results were mixed, and energy labels were consistently low. CONCLUSIONS: Simple, factual labels were easily interpreted and perceived as most effective. Labels quantifying sugar content were consistently high performers and should be advanced into policy to help decrease overconsumption of sugar-sweetened beverages.


Asunto(s)
Bebidas Azucaradas , Humanos , Azúcares , Jugos de Frutas y Vegetales , Bebidas , Etiquetado de Alimentos/métodos
7.
Annu Rev Genomics Hum Genet ; 21: 1-13, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32119789

RESUMEN

I was honored to be asked by the Editorial Committee of the Annual Review of Genomics and Genetics to write an autobiographical account of my life in science and in genetics in particular. The field has moved from mapping Mendelian disorders 40 years ago to the delivery of effective therapies for some monogenic disorders today. My 40-year journey from diagnosis to therapy for Duchenne muscular dystrophy has depended on collaborations among basic scientists, clinicians, medical charities, genetic counselors, biotech companies, and affected families. The future of human genetics looks even more exciting, with techniques such as single-cell sequencing and somatic cell CRISPR editing opening up opportunities for precision medicine and accelerating progress.


Asunto(s)
Modelos Animales de Enfermedad , Distrofina/genética , Terapia Genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/terapia , Mutación , Animales , Edición Génica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Publicaciones Periódicas como Asunto
8.
Proc Biol Sci ; 290(2011): 20231390, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018101

RESUMEN

Collective action problems arise when cooperating individuals suffer costs of cooperation, while the benefits of cooperation are received by both cooperators and defectors. We address this problem using data from spotted hyenas fighting with lions. Lions are much larger and kill many hyenas, so these fights require cooperative mobbing by hyenas for them to succeed. We identify factors that predict when hyena groups engage in cooperative fights with lions, which individuals choose to participate and how the benefits of victory are distributed among cooperators and non-cooperators. We find that cooperative mobbing is better predicted by lower costs (no male lions, more hyenas) than higher benefits (need for food). Individual participation is facilitated by social factors, both over the long term (close kin, social bond strength) and the short term (greeting interactions prior to cooperation). Finally, we find some direct benefits of participation: after cooperation, participants were more likely to feed at contested carcasses than non-participants. Overall, these results are consistent with the hypothesis that, when animals face dangerous cooperative dilemmas, selection favours flexible strategies that are sensitive to dynamic factors emerging over multiple time scales.


Asunto(s)
Hyaenidae , Leones , Animales , Humanos
9.
Cell ; 133(4): 572-4, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485864

RESUMEN

Spinal muscular atrophy (SMA) is caused by a drastic reduction in the ubiquitously expressed SMN protein, which is critical for the correct assembly of the snRNP complexes required for RNA splicing. However, it is unclear why loss of SMN and altered snRNP assembly only seem to affect motor neurons. Reporting in this issue, Zhang et al. (2008) challenge prior assumptions about the housekeeping function of SMN and demonstrate that loss of SMN leads to highly tissue-specific effects on splicing.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Ratones , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN
10.
Proc Natl Acad Sci U S A ; 117(38): 23835-23846, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900948

RESUMEN

Nef is an HIV-encoded accessory protein that enhances pathogenicity by down-regulating major histocompatibility class I (MHC-I) expression to evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered that the plecomacrolide family of natural products restored MHC-I to the surface of Nef-expressing primary cells with variable potency. Concanamycin A (CMA) counteracted Nef at subnanomolar concentrations that did not interfere with lysosomal acidification or degradation and were nontoxic in primary cell cultures. CMA specifically reversed Nef-mediated down-regulation of MHC-I, but not CD4, and cells treated with CMA showed reduced formation of the Nef:MHC-I:AP-1 complex required for MHC-I down-regulation. CMA restored expression of diverse allotypes of MHC-I in Nef-expressing cells and inhibited Nef alleles from divergent clades of HIV and simian immunodeficiency virus, including from primary patient isolates. Lastly, we found that restoration of MHC-I in HIV-infected cells was accompanied by enhanced CTL-mediated clearance of infected cells comparable to genetic deletion of Nef. Thus, we propose CMA as a lead compound for therapeutic inhibition of Nef to enhance immune-mediated clearance of HIV-infected cells.


Asunto(s)
VIH-1 , Interacciones Huésped-Patógeno , Macrólidos , Linfocitos T Citotóxicos , Células Cultivadas , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Macrólidos/inmunología , Macrólidos/farmacología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana
11.
Proc Biol Sci ; 289(1979): 20220548, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35855604

RESUMEN

In animal societies, identity signals are common, mediate interactions within groups, and allow individuals to discriminate group-mates from out-group competitors. However, individual recognition becomes increasingly challenging as group size increases and as signals must be transmitted over greater distances. Group vocal signatures may evolve when successful in-group/out-group distinctions are at the crux of fitness-relevant decisions, but group signatures alone are insufficient when differentiated within-group relationships are important for decision-making. Spotted hyenas are social carnivores that live in stable clans of less than 125 individuals composed of multiple unrelated matrilines. Clan members cooperate to defend resources and communal territories from neighbouring clans and other mega carnivores; this collective defence is mediated by long-range (up to 5 km range) recruitment vocalizations, called whoops. Here, we use machine learning to determine that spotted hyena whoops contain individual but not group signatures, and that fundamental frequency features which propagate well are critical for individual discrimination. For effective clan-level cooperation, hyenas face the cognitive challenge of remembering and recognizing individual voices at long range. We show that serial redundancy in whoop bouts increases individual classification accuracy and thus extended call bouts used by hyenas probably evolved to overcome the challenges of communicating individual identity at long distance.


Asunto(s)
Carnívoros , Hyaenidae , Animales , Recuerdo Mental , Reconocimiento en Psicología
12.
Horm Behav ; 137: 105082, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798449

RESUMEN

Salivary hormone analyses provide a useful alternative to fecal and urinary hormone analyses in non-invasive studies of behavioral endocrinology. Here, we use saliva to assess cortisol levels in a wild population of spotted hyenas (Crocuta crocuta), a gregarious carnivore living in complex social groups. We first describe a novel, non-invasive method of collecting saliva from juvenile hyenas and validate a salivary cortisol assay for use in this species. We then analyze over 260 saliva samples collected from nearly 70 juveniles to investigate the relationships between cortisol and temporal and social variables in these animals. We obtain some evidence of a bimodal daily rhythm with salivary cortisol concentrations dropping around dawn and dusk, times at which cub activity levels are changing substantially. We also find that dominant littermates have lower cortisol than singleton juveniles, but that cortisol does not vary with age, sex, or maternal social rank. Finally, we examine how social behaviors such as aggression or play affect salivary cortisol concentrations. We find that inflicting aggression on others was associated with lower cortisol concentrations. We hope that the detailed description of our methods provides wildlife researchers with the tools to measure salivary cortisol in other wild carnivores.


Asunto(s)
Carnívoros , Hyaenidae , Animales , Animales Salvajes , Heces , Hidrocortisona , Saliva
13.
Biol Lett ; 18(7): 20220194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35855609

RESUMEN

In ecology and evolutionary biology (EEB), the study of developmental plasticity seeks to understand ontogenetic processes underlying the phenotypes upon which natural selection acts. A central challenge to this inquiry is ascertaining a causal effect of the exposure on the manifestation of later-life phenotype due to the time elapsed between the two events. The exposure is a potential cause of the outcome-i.e. an environmental stimulus or experience. The later phenotype might be a behaviour, physiological condition, morphology or life-history trait. The latency period between the exposure and outcome complicates causal inference due to the inevitable occurrence of additional events that may affect the relationship of interest. Here, we describe six distinct but non-mutually exclusive conceptual models from the field of lifecourse epidemiology and discuss their applications to EEB research. The models include Critical Period with No Later Modifiers, Critical Period with Later Modifiers, Accumulation of Risk with Independent Risk Exposures, Accumulation of Risk with Risk Clustering, Accumulation of Risk with Chains of Risk and Accumulation of Risk with Trigger Effect. These models, which have been widely used to test causal hypotheses regarding the early origins of adult-onset disease in humans, are directly relevant to research on developmental plasticity in EEB.


Asunto(s)
Evolución Biológica , Ecología , Humanos , Modelos Teóricos , Fenotipo , Selección Genética
14.
Bioorg Med Chem ; 69: 116812, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772287

RESUMEN

A therapeutic approach that holds the potential to treat all Duchenne muscular dystrophy (DMD) patient populations is utrophin modulation. Ezutromid, a first generation utrophin modulator which was later found to act via antagonism of the arylhydrocarbon receptor, progressed to Phase 2 clinical trials. Although interim data showed target engagement and functional improvements, ezutromid ultimately failed to meet its clinical endpoints. We recently described the identification of a new class of hydrazide utrophin modulators which has a different mechanism of action to ezutromid. In this study we report our early optimisation studies on this hydrazide series. The new analogues had significantly improved potency in cell-based assays, increased sp3 character and reduced lipophilicity, which also improved their physicochemical properties. A representative new analogue combining these attributes increased utrophin protein in dystrophic mouse cells showing it can be used as a chemical tool to reveal new insights regarding utrophin upregulation as a strategy for DMD therapeutic intervention.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Ratones , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Relación Estructura-Actividad , Regulación hacia Arriba , Utrofina/genética , Utrofina/metabolismo , Utrofina/uso terapéutico
15.
Proc Natl Acad Sci U S A ; 116(18): 8919-8924, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30858321

RESUMEN

Social hierarchies are widespread in human and animal societies, and an individual's position in its hierarchy affects both its access to resources and its fitness. Hierarchies are traditionally thought of in terms of variation in individual ability to win fights, but many are structured around arbitrary conventions like nepotistic inheritance rather than such traits as physical strength or weapon size. These convention-based societies are perplexing because position in the hierarchy appears to be gained irrespective of individual physical ability, yet social status strongly affects access to resources and fitness. It remains unclear why individuals abide by seemingly arbitrary conventions regarding social status when they stand to benefit by ignoring these conventions and competing for top positions or access to resources. Using data from wild spotted hyenas collected over 27 y and five generations, we show that individuals who repeatedly form coalitions with their top allies are likely to improve their position in the hierarchy, suggesting that social alliances facilitate revolutionary social change. Using lifetime reproductive success as a fitness measure, we go on to demonstrate that these status changes can have major fitness consequences. Finally, we show that the consequences of these changes may become even more dramatic over multiple generations, as small differences in social rank become amplified over time. This work represents a first step in reconciling the advantages of high status with the appearance of "arbitrary" conventions that structure inequality in animal and human societies.


Asunto(s)
Conducta Cooperativa , Jerarquia Social , Hyaenidae/fisiología , Predominio Social , Animales , Animales Salvajes , Cultura
16.
Mamm Biol ; 102(4): 1089-1112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530605

RESUMEN

From population estimates to social evolution, much of our understanding of the family Hyaenidae is drawn from studies of known individuals. The extant species in this family (spotted hyenas, Crocuta crocuta, brown hyenas, Parahyaena brunnea, striped hyenas, Hyaena hyaena, and aardwolves, Proteles cristata) are behaviorally diverse, presenting an equally diverse set of logistical constraints on capturing and marking individuals. All these species are individually identifiable by their coat patterns, providing a useful alternative to man-made markings. Many studies have demonstrated the utility of this method in answering a wide range of research questions across all four species, with some employing a creative fusion of techniques. Despite its pervasiveness in basic research on hyenas and aardwolves, individual identification has rarely been applied to the conservation and management of these species. We argue that individual identification using naturally occurring markings in applied research could prove immensely helpful, as this could further improve accuracy of density estimates, reveal characteristics of suitable habitat, identify threats to population persistence, and help to identify individual problem animals. Supplementary Information: The online version contains supplementary material available at 10.1007/s42991-022-00309-4.

17.
Hum Mutat ; 42(1): 3-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252176

RESUMEN

Documenting variation in our genomes is important for research and clinical care. Accuracy in the description of DNA variants is therefore essential. To address this issue, the Human Variome Project convened a committee to evaluate the feasibility of requiring authors to verify that all variants submitted for publication complied with a widely accepted standard for description. After a pilot study of two journals, the committee agreed that requiring authors to verify that variants complied with Human Genome Variation Society nomenclature is a reasonable step toward standardizing the worldwide inventory of human variation.


Asunto(s)
ADN , Genoma Humano , Publicaciones Periódicas como Asunto , Terminología como Asunto , ADN/genética , Variación Genética , Proyecto Genoma Humano , Humanos , Publicaciones Periódicas como Asunto/normas , Proyectos Piloto , Publicaciones/normas
18.
Hum Mol Genet ; 28(13): 2189-2200, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30990876

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disorder caused by loss of dystrophin. Several therapeutic modalities are currently in clinical trials but none will achieve maximum functional rescue and full disease correction. Therefore, we explored the potential of combining the benefits of dystrophin with increases of utrophin, an autosomal paralogue of dystrophin. Utrophin and dystrophin can be co-expressed and co-localized at the same muscle membrane. Wild-type (wt) levels of dystrophin are not significantly affected by a moderate increase of utrophin whereas higher levels of utrophin reduce wt dystrophin, suggesting a finite number of actin binding sites at the sarcolemma. Thus, utrophin upregulation strategies may be applied to the more mildly affected Becker patients with lower dystrophin levels. Whereas increased dystrophin in wt animals does not offer functional improvement, overexpression of utrophin in wt mice results in a significant supra-functional benefit over wt. These findings highlight an additive benefit of the combined therapy and potential new unique roles of utrophin. Finally, we show a 30% restoration of wt dystrophin levels, using exon-skipping, together with increased utrophin levels restores dystrophic muscle function to wt levels offering greater therapeutic benefit than either single approach alone. Thus, this combination therapy results in additive functional benefit and paves the way for potential future combinations of dystrophin- and utrophin-based strategies.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/terapia , Utrofina/genética , Animales , Distrofina/metabolismo , Exones , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Morfolinos/síntesis química , Morfolinos/uso terapéutico , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miofibrillas/metabolismo , Sarcolema/metabolismo , Regulación hacia Arriba , Utrofina/metabolismo
19.
Hum Mol Genet ; 28(21): 3584-3599, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642482

RESUMEN

A common pathological hallmark of amyotrophic lateral sclerosis (ALS) and the related neurodegenerative disorder frontotemporal dementia, is the cellular mislocalization of transactive response DNA-binding protein 43 kDa (TDP-43). Additionally, multiple mutations in the TARDBP gene (encoding TDP-43) are associated with familial forms of ALS. While the exact role for TDP-43 in the onset and progression of ALS remains unclear, the identification of factors that can prevent aberrant TDP-43 localization and function could be clinically beneficial. Previously, we discovered that the oxidation resistance 1 (Oxr1) protein could alleviate cellular mislocalization phenotypes associated with TDP-43 mutations, and that over-expression of Oxr1 was able to delay neuromuscular abnormalities in the hSOD1G93A ALS mouse model. Here, to determine whether Oxr1 can protect against TDP-43-associated phenotypes in vitro and in vivo, we used the same genetic approach in a newly described transgenic mouse expressing the human TDP-43 locus harbouring an ALS disease mutation (TDP-43M337V). We show in primary motor neurons from TDP-43M337V mice that genetically-driven Oxr1 over-expression significantly alleviates cytoplasmic mislocalization of mutant TDP-43. We also further quantified newly-identified, late-onset neuromuscular phenotypes of this mutant line, and demonstrate that neuronal Oxr1 over-expression causes a significant reduction in muscle denervation and neuromuscular junction degeneration in homozygous mutants in parallel with improved motor function and a reduction in neuroinflammation. Together these data support the application of Oxr1 as a viable and safe modifier of TDP-43-associated ALS phenotypes.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/prevención & control , Animales , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mitocondriales/genética , Desnervación Muscular , Músculos/inervación , Mutación Missense , Unión Neuromuscular/metabolismo , Transporte de Proteínas
20.
Hum Mol Genet ; 28(2): 307-319, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30304405

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. Constitutive utrophin expression, a structural and functional paralogue of dystrophin, can successfully prevent the dystrophic pathology in the dystrophin-deficient mdx mouse model. In dystrophic muscles, utrophin is increased as part of the repair process and localized at the sarcolemma of regenerating myofibers. The presence of developmental myosin such as embryonic myosin (MyHC-emb) and neonatal represents a useful marker of muscle regeneration and a meaningful indicator of muscle damage, which correlates with the clinical severity of milder Becker muscular dystrophy and DMD patients. In the present study, we demonstrate that MyHC-emb is a robust marker of regeneration at different ages and in different skeletal muscles. We also evaluate the correlation between utrophin, dystrophin and MyHC-emb in wild-type (wt) and regenerating dystrophic muscles. Restoration of dystrophin significantly reduced MyHC-emb levels. Similarly, overexpression of utrophin in the transgenic mdx-Fiona mice reduced the number of MyHC-emb positive fibers to wt level, prevented the regenerative process and rescued the muscle function. In contrast, the absence of utrophin in the dystrophin-deficient double-knockout mice resulted in a higher MyHC-emb content and in a more severe dystrophic pathophysiology than in mdx mice. These data illustrate the importance of monitoring utrophin and MyHC-emb levels in the preclinical evaluation of therapies and provide translational support for the use of developmental myosin as a disease biomarker in DMD clinical trials.


Asunto(s)
Distrofina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miosinas/metabolismo , Regeneración , Utrofina/metabolismo , Animales , Biomarcadores/metabolismo , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Embrión de Mamíferos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/embriología , Músculo Esquelético/fisiología , Distrofia Muscular Animal , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/embriología , Distrofia Muscular de Duchenne/patología , Sarcolema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA