Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Annu Rev Cell Dev Biol ; 31: 741-77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26422333

RESUMEN

The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;


Asunto(s)
Dendritas/fisiología , Animales , Emparejamiento Cromosómico/fisiología , Humanos
2.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30850344

RESUMEN

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Asunto(s)
Homeostasis/fisiología , Microglía/patología , Degeneración Retiniana/patología , Animales , Modelos Animales de Enfermedad , Epitelio Corneal/patología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Retina/patología , Regulación hacia Arriba/fisiología
3.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33960384

RESUMEN

Angiogenesis in the developing mammalian retina requires patterning cues from astrocytes. Developmental disorders of retinal vasculature, such as retinopathy of prematurity (ROP), involve arrest or mispatterning of angiogenesis. Whether these vascular pathologies involve astrocyte dysfunction remains untested. Here, we demonstrate that the major risk factor for ROP - transient neonatal exposure to excess oxygen - disrupts formation of the angiogenic astrocyte template. Exposing newborn mice to elevated oxygen (75%) suppressed astrocyte proliferation, whereas return to room air (21% oxygen) at postnatal day 4 triggered extensive proliferation, massively increasing astrocyte numbers and disturbing their spatial patterning prior to the arrival of developing vasculature. Proliferation required astrocytic HIF2α and was also stimulated by direct hypoxia (10% oxygen), suggesting that astrocyte oxygen sensing regulates the number of astrocytes produced during development. Along with astrocyte defects, return to room air also caused vascular defects reminiscent of ROP. Strikingly, these vascular phenotypes were more severe in animals that had larger numbers of excess astrocytes. Together, our findings suggest that fluctuations in environmental oxygen dysregulate molecular pathways controlling astrocyte proliferation, thereby generating excess astrocytes that interfere with retinal angiogenesis.


Asunto(s)
Astrocitos/metabolismo , Proliferación Celular/fisiología , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Oxígeno/metabolismo , Retina/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Hipoxia/metabolismo , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Oxígeno/farmacología , Retina/anomalías , Retina/metabolismo , Retina/patología , Vasos Retinianos/metabolismo , Retinopatía de la Prematuridad
4.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732574

RESUMEN

Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.


Asunto(s)
Empalme Alternativo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/metabolismo , Animales , Canales de Calcio/metabolismo , Ratones , Ratones Noqueados , Isoformas de Proteínas/metabolismo , Proteoma , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética
5.
Dev Biol ; 478: 144-154, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260962

RESUMEN

Throughout the central nervous system, astrocytes adopt precisely ordered spatial arrangements of their somata and arbors, which facilitate their many important functions. Astrocyte pattern formation is particularly important in the retina, where astrocytes serve as a template that dictates the pattern of developing retinal vasculature. Thus, if astrocyte patterning is disturbed, there are severe consequences for retinal angiogenesis and ultimately for vision - as seen in diseases such as retinopathy of prematurity. Here we discuss key steps in development of the retinal astrocyte population. We describe how fundamental developmental forces - their birth, migration, proliferation, and death - sculpt astrocytes into a template that guides angiogenesis. We further address the radical changes in the cellular and molecular composition of the astrocyte network that occur upon completion of angiogenesis, paving the way for their adult functions in support of retinal ganglion cell axons. Understanding development of retinal astrocytes may elucidate pattern formation mechanisms that are deployed broadly by other axon-associated astrocyte populations.


Asunto(s)
Astrocitos/fisiología , Retina/crecimiento & desarrollo , Retina/fisiología , Animales , Axones/fisiología , Muerte Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Humanos , Neovascularización Fisiológica , Fibras Nerviosas/fisiología , Retina/citología , Retina/embriología , Células Ganglionares de la Retina/fisiología , Vasos Retinianos/embriología , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/fisiología , Retinopatía de la Prematuridad/patología , Retinopatía de la Prematuridad/fisiopatología
6.
PLoS Biol ; 17(10): e3000492, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626642

RESUMEN

Naturally occurring cell death is a fundamental developmental mechanism for regulating cell numbers and sculpting developing organs. This is particularly true in the nervous system, where large numbers of neurons and oligodendrocytes are eliminated via apoptosis during normal development. Given the profound impact of death upon these two major cell populations, it is surprising that developmental death of another major cell type-the astrocyte-has rarely been studied. It is presently unclear whether astrocytes are subject to significant developmental death, and if so, how it occurs. Here, we address these questions using mouse retinal astrocytes as our model system. We show that the total number of retinal astrocytes declines by over 3-fold during a death period spanning postnatal days 5-14. Surprisingly, these astrocytes do not die by apoptosis, the canonical mechanism underlying the vast majority of developmental cell death. Instead, we find that microglia engulf astrocytes during the death period to promote their developmental removal. Genetic ablation of microglia inhibits astrocyte death, leading to a larger astrocyte population size at the end of the death period. However, astrocyte death is not completely blocked in the absence of microglia, apparently due to the ability of astrocytes to engulf each other. Nevertheless, mice lacking microglia showed significant anatomical changes to the retinal astrocyte network, with functional consequences for the astrocyte-associated vasculature leading to retinal hemorrhage. These results establish a novel modality for naturally occurring cell death and demonstrate its importance for the formation and integrity of the retinal gliovascular network.


Asunto(s)
Astrocitos/citología , Muerte Celular/genética , Microglía/citología , Retina/citología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Comunicación Celular , Recuento de Células , Toxina Diftérica/toxicidad , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Hemorragia Retiniana/genética , Hemorragia Retiniana/metabolismo , Hemorragia Retiniana/fisiopatología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Adv Exp Med Biol ; 1185: 251-255, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884620

RESUMEN

Mutations in the gene Crumbs homolog 1 (CRB1) are responsible for several retinopathies that are diverse in severity and phenotype. Thus, there is considerable incentive to determine how disruption of this gene causes disease. Progress on this front will aid in developing molecular diagnostics that can predict disease severity with the ultimate goal of developing therapies for CRB1 retinopathies via gene replacement. The purpose of this review is to summarize what is known regarding CRB1 and highlights information outstanding. Doing so will provide a framework toward a thorough understanding of CRB1 at the molecular and protein level with the ultimate goal of deciphering how it contributes to the disease.


Asunto(s)
Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Enfermedades de la Retina/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Mutación , Síndromes Paraneoplásicos Oculares
8.
Nature ; 483(7390): 465-9, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22407321

RESUMEN

In many parts of the nervous system, neuronal somata display orderly spatial arrangements. In the retina, neurons of numerous individual subtypes form regular arrays called mosaics: they are less likely to be near neighbours of the same subtype than would occur by chance, resulting in 'exclusion zones' that separate them. Mosaic arrangements provide a mechanism to distribute each cell type evenly across the retina, ensuring that all parts of the visual field have access to a full set of processing elements. Remarkably, mosaics are independent of each other: although a neuron of one subtype is unlikely to be adjacent to another of the same subtype, there is no restriction on its spatial relationship to neighbouring neurons of other subtypes. This independence has led to the hypothesis that molecular cues expressed by specific subtypes pattern mosaics by mediating homotypic (within-subtype) short-range repulsive interactions. So far, however, no molecules have been identified that show such activity, so this hypothesis remains untested. Here we demonstrate in mouse that two related transmembrane proteins, MEGF10 and MEGF11, have critical roles in the formation of mosaics by two retinal interneuron subtypes, starburst amacrine cells and horizontal cells. MEGF10 and 11 and their invertebrate relatives Caenorhabditis elegans CED-1 and Drosophila Draper have hitherto been studied primarily as receptors necessary for engulfment of debris following apoptosis or axonal injury. Our results demonstrate that members of this gene family can also serve as subtype-specific ligands that pattern neuronal arrays.


Asunto(s)
Células Amacrinas/citología , Proteínas de la Membrana/metabolismo , Células Horizontales de la Retina/citología , Células Amacrinas/metabolismo , Animales , Adhesión Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ligandos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Células Horizontales de la Retina/metabolismo
9.
Glia ; 65(10): 1697-1716, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28722174

RESUMEN

Immature astrocytes and blood vessels enter the developing mammalian retina at the optic nerve head and migrate peripherally to colonize the entire retinal nerve fiber layer (RNFL). Retinal vascularization is arrested in retinopathy of prematurity (ROP), a major cause of bilateral blindness in children. Despite their importance in normal development and ROP, the factors that control vascularization of the retina remain poorly understood. Because astrocytes form a reticular network that appears to provide a substrate for migrating endothelial cells, they have long been proposed to guide angiogenesis. However, whether astrocytes do in fact impose a spatial pattern on developing vessels remains unclear, and how astrocytes themselves are guided is unknown. Here we explore the cellular mechanisms that ensure complete retinal coverage by astrocytes and blood vessels in mouse. We find that migrating astrocytes associate closely with the axons of retinal ganglion cells (RGCs), their neighbors in the RNFL. Analysis of Robo1; Robo2 mutants, in which RGC axon guidance is disrupted, and Math5 (Atoh7) mutants, which lack RGCs, reveals that RGCs provide directional information to migrating astrocytes that sets them on a centrifugal trajectory. Without this guidance, astrocytes exhibit polarization defects, fail to colonize the peripheral retina, and display abnormal fine-scale spatial patterning. Furthermore, using cell type-specific chemical-genetic tools to selectively ablate astrocytes, we show that the astrocyte template is required for angiogenesis and vessel patterning. Our results are consistent with a model whereby RGC axons guide formation of an astrocytic network that subsequently directs vessel development.


Asunto(s)
Astrocitos/fisiología , Axones/fisiología , Neovascularización Fisiológica/fisiología , Retina/citología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Toxina Diftérica/farmacología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Neovascularización Fisiológica/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Células Ganglionares de la Retina/citología , Proteína Homeobox SIX3
10.
J Neurosci ; 34(30): 10109-21, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057212

RESUMEN

The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.


Asunto(s)
Células Amacrinas/fisiología , Neuronas Colinérgicas/fisiología , Dendritas/fisiología , Retina/citología , Retina/fisiología , Factores de Transcripción SOXB1/fisiología , Animales , Recuento de Células/métodos , Células Cultivadas , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos A , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
11.
J Neurophysiol ; 109(9): 2250-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23390312

RESUMEN

Slow afterhyperpolarizations (sAHPs) play an important role in establishing the firing pattern of neurons that in turn influence network activity. sAHPs are mediated by calcium-activated potassium channels. However, the molecular identity of these channels and the mechanism linking calcium entry to their activation are still unknown. Here we present several lines of evidence suggesting that the sAHPs in developing starburst amacrine cells (SACs) are mediated by two-pore potassium channels. First, we use whole cell and perforated patch voltage clamp recordings to characterize the sAHP conductance under different pharmacological conditions. We find that this conductance was calcium dependent, reversed at EK, blocked by barium, insensitive to apamin and TEA, and activated by arachidonic acid. In addition, pharmacological inhibition of calcium-activated phosphodiesterase reduced the sAHP. Second, we performed gene profiling on isolated SACs and found that they showed strong preferential expression of the two-pore channel gene kcnk2 that encodes TREK1. Third, we demonstrated that TREK1 knockout animals exhibited an altered frequency of retinal waves, a frequency that is set by the sAHPs in SACs. With these results, we propose a model in which depolarization-induced decreases in cAMP lead to disinhibition of the two-pore potassium channels and in which the kinetics of this biochemical pathway dictate the slow activation and deactivation of the sAHP conductance. Our model offers a novel pathway for the activation of a conductance that is physiologically important.


Asunto(s)
Células Amacrinas/fisiología , Potenciales de la Membrana , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potenciales de Acción , Células Amacrinas/efectos de los fármacos , Células Amacrinas/metabolismo , Animales , Ácido Araquidónico/farmacología , Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/genética , Transcripción Genética
12.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38014021

RESUMEN

In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using newly-generated transgenic tools and single cell labeling, we identify a transient developmental period when starburst somata receive extensive contacts from neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing, and suggest that this could be a general mechanism for mosaic patterning across many cell types and species.

13.
Dev Cell ; 58(20): 2080-2096.e7, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37557174

RESUMEN

During nervous system development, neurons choose synaptic partners with remarkable specificity; however, the cell-cell recognition mechanisms governing rejection of inappropriate partners remain enigmatic. Here, we show that mouse retinal neurons avoid inappropriate partners by using the FLRT2-uncoordinated-5 (UNC5) receptor-ligand system. Within the inner plexiform layer (IPL), FLRT2 is expressed by direction-selective (DS) circuit neurons, whereas UNC5C/D are expressed by non-DS neurons projecting to adjacent IPL sublayers. In vivo gain- and loss-of-function experiments demonstrate that FLRT2-UNC5 binding eliminates growing DS dendrites that have strayed from the DS circuit IPL sublayers. Abrogation of FLRT2-UNC5 binding allows mistargeted arbors to persist, elaborate, and acquire synapses from inappropriate partners. Conversely, UNC5C misexpression within DS circuit sublayers inhibits dendrite growth and drives arbors into adjacent sublayers. Mechanistically, UNC5s promote dendrite elimination by interfering with FLRT2-mediated adhesion. Based on their broad expression, FLRT-UNC5 recognition is poised to exert widespread effects upon synaptic partner choices across the nervous system.


Asunto(s)
Neuronas , Retina , Animales , Ratones , Neuronas/fisiología , Transducción de Señal , Comunicación Celular , Sinapsis/fisiología , Dendritas/fisiología , Glicoproteínas de Membrana/metabolismo
14.
J Neurosci ; 31(21): 7753-62, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21613488

RESUMEN

The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.


Asunto(s)
Percepción de Movimiento/fisiología , Estimulación Luminosa/métodos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Vías Visuales/citología , Vías Visuales/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Cadherinas/biosíntesis , Dendritas/metabolismo , Dendritas/ultraestructura , Metaloproteinasas de la Matriz Asociadas a la Membrana/biosíntesis , Ratones , Ratones Transgénicos , Retina/citología , Retina/metabolismo
15.
Neuron ; 105(3): 464-474.e6, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31812516

RESUMEN

Many neuronal types occur as pairs that are similar in most respects but differ in a key feature. In some pairs of retinal neurons, called paramorphic, one member responds to increases and the other to decreases in luminance (ON and OFF responses). Here, we focused on one such pair, starburst amacrine cells (SACs), to explore how closely related neuronal types diversify. We find that ON and OFF SACs are transcriptionally distinct prior to their segregation, dendritic outgrowth, and synapse formation. The transcriptional repressor Fezf1 is selectively expressed by postmitotic ON SACs and promotes the ON fate and gene expression program while repressing the OFF fate and program. The atypical Rho GTPase Rnd3 is selectively expressed by OFF SACs and regulates their migration but is repressed by Fezf1 in ON SACs, enabling differential positioning of the two types. These results define a transcriptional program that controls diversification of a paramorphic pair.


Asunto(s)
Células Amacrinas/metabolismo , Interneuronas/metabolismo , Mitosis/fisiología , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Transcripción Genética/fisiología , Células Amacrinas/química , Animales , Animales Recién Nacidos , Femenino , Células HEK293 , Humanos , Interneuronas/química , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Embarazo , Proteínas Represoras/análisis
16.
Nat Commun ; 11(1): 3328, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620864

RESUMEN

Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease.


Asunto(s)
Variación Genética , Proteínas de la Membrana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Isoformas de ARN/genética , Retina/metabolismo , Degeneración Retiniana/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Isoformas de ARN/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Degeneración Retiniana/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
17.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32027825

RESUMEN

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Asunto(s)
Marcación de Gen/métodos , Integrasas/genética , Neuronas/metabolismo , Oocitos/metabolismo , Recombinación Genética/genética , Espermatozoides/metabolismo , Animales , Femenino , Genes Reporteros , Células Germinativas , Masculino , Ratones , Ratones Transgénicos , Mosaicismo
18.
Neuron ; 43(6): 759-60, 2004 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-15363386

RESUMEN

Progenitor cells in the mammalian retina generate at least 55 distinct kinds of neurons. Two reports in this issue of Neuron reveal two transcription factors (Foxn4 and Bhlhb4) that contribute to the development of this remarkable cellular diversity.


Asunto(s)
Genes de Cambio/fisiología , Neuronas/fisiología , Retina/citología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Ojo/metabolismo , Factores de Transcripción Forkhead , Ratones , Retina/fisiología , Factores de Transcripción/metabolismo
19.
PLoS Genet ; 1(5): e66, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16311625

RESUMEN

The visual system converts the distribution and wavelengths of photons entering the eye into patterns of neuronal activity, which then drive motor and endocrine behavioral responses. The gene products important for visual processing by a living and behaving vertebrate animal have not been identified in an unbiased fashion. Likewise, the genes that affect development of the nervous system to shape visual function later in life are largely unknown. Here we have set out to close this gap in our understanding by using a forward genetic approach in zebrafish. Moving stimuli evoke two innate reflexes in zebrafish larvae, the optomotor and the optokinetic response, providing two rapid and quantitative tests to assess visual function in wild-type (WT) and mutant animals. These behavioral assays were used in a high-throughput screen, encompassing over half a million fish. In almost 2,000 F2 families mutagenized with ethylnitrosourea, we discovered 53 recessive mutations in 41 genes. These new mutations have generated a broad spectrum of phenotypes, which vary in specificity and severity, but can be placed into only a handful of classes. Developmental phenotypes include complete absence or abnormal morphogenesis of photoreceptors, and deficits in ganglion cell differentiation or axon targeting. Other mutations evidently leave neuronal circuits intact, but disrupt phototransduction, light adaptation, or behavior-specific responses. Almost all of the mutants are morphologically indistinguishable from WT, and many survive to adulthood. Genetic linkage mapping and initial molecular analyses show that our approach was effective in identifying genes with functions specific to the visual system. This collection of zebrafish behavioral mutants provides a novel resource for the study of normal vision and its genetic disorders.


Asunto(s)
Conducta Animal , Visión Ocular , Animales , Axones , Etilnitrosourea/farmacología , Regulación de la Expresión Génica , Ligamiento Genético , Técnicas Genéticas , Mutagénesis , Fenómenos Fisiológicos Oculares , Fenotipo , Células Fotorreceptoras , Pez Cebra
20.
Curr Opin Neurobiol ; 53: 139-145, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30092409

RESUMEN

Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.


Asunto(s)
Células Amacrinas/fisiología , Dendritas/fisiología , Morfogénesis/fisiología , Red Nerviosa/crecimiento & desarrollo , Plasticidad Neuronal/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA