Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Physiol ; 65(1): 142-155, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37930797

RESUMEN

DNA double-strand breaks (DSBs) are among the most serious types of DNA damage, causing mutations and chromosomal rearrangements. In eukaryotes, DSBs are immediately repaired in coordination with chromatin remodeling for the deposition of DSB-related histone modifications and variants. To elucidate the details of DSB-dependent chromatin remodeling throughout the genome, artificial DSBs need to be reproducibly induced at various genomic loci. Recently, a comprehensive method for elucidating chromatin remodeling at multiple DSB loci via chemically induced expression of a restriction enzyme was developed in mammals. However, this DSB induction system is unsuitable for investigating chromatin remodeling during and after DSB repair, and such an approach has not been performed in plants. Here, we established a transgenic Arabidopsis plant harboring a restriction enzyme gene Sbf I driven by a heat-inducible promoter. Using this transgenic line, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of histones H4K16ac and H2A.Z and investigated the dynamics of these histone marks around the endogenous 623 Sbf I recognition sites. We also precisely quantified DSB efficiency at all cleavage sites using the DNA resequencing data obtained by the ChIP-seq procedure. From the results, Sbf I-induced DSBs were detected at 360 loci, which induced the transient deposition of H4K16ac and H2A.Z around these regions. Interestingly, we also observed the co-localization of H4K16ac and H2A.Z at some DSB loci. Overall, DSB-dependent chromatin remodeling was found to be highly conserved between plants and animals. These findings provide new insights into chromatin remodeling that occurs in response to DSBs in Arabidopsis.


Asunto(s)
Arabidopsis , Histonas , Histonas/metabolismo , Roturas del ADN de Doble Cadena , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , ADN , Reparación del ADN
2.
PLoS One ; 16(6): e0252674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111139

RESUMEN

The manner in which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome is poorly understood. To examine such processes of gene evolution, we performed an artificial evolutionary experiment in Arabidopsis thaliana. As a model of gene-birth events, we introduced a promoterless coding sequence of the firefly luciferase (LUC) gene and established 386 T2-generation transgenic lines. Among them, we determined the individual LUC insertion loci in 76 lines and found that one-third of them were transcribed de novo even in the intergenic or inherently unexpressed regions. In the transcribed lines, transcription-related chromatin marks were detected across the newly activated transcribed regions. These results agreed with our previous findings in A. thaliana cultured cells under a similar experimental scheme. A comparison of the results of the T2-plant and cultured cell experiments revealed that the de novo-activated transcription concomitant with local chromatin remodelling was inheritable. During one-generation inheritance, it seems likely that the transcription activities of the LUC inserts trapped by the endogenous genes/transcripts became stronger, while those of de novo transcription in the intergenic/untranscribed regions became weaker. These findings may offer a clue for the elucidation of the mechanism by which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Patrón de Herencia/genética , Sistemas de Lectura Abierta/genética , Transcripción Genética , Secuencia de Bases , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Evolución Molecular , Luciferasas de Luciérnaga/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA