Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 45(17): 4790-4793, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870858

RESUMEN

Optical beams carrying orbital angular momentum are a very active field of research for their prospective applications, especially at short wavelengths. We consider here such beams produced through high-harmonic generation (HHG) in a rare gas and analyze the characterization of their high-charge vortex structure by an extreme ultraviolet Hartmann wavefront sensor. We show that such HHG beams are generally composed of a set of numerous vortex modes. The sensitivity of the intensity and phase of the HHG beam to the infrared laser aberrations is investigated using a deformable mirror.

2.
Opt Lett ; 43(12): 2780-2783, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905687

RESUMEN

We demonstrate for the first time, to the best of our knowledge, the ability of extreme ultraviolet (XUV) Hartmann wavefront sensors to characterize high charge vortex beams produced by high-order harmonic generation up to the order of 25. We also show that phase matched absorption limited high harmonic generation is able to maintain the high charge vortex structure of the XUV beam even in a rather long (1 cm) generation medium.

3.
Opt Lett ; 40(20): 4775-8, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469617

RESUMEN

Harmonic seeded operation of a neon-like titanium plasma-based soft x-ray laser is described. The plasma amplifier is pumped with a variation of the grazing incidence technique involving a fast and localized ionization step. We discuss its effect on gain dynamics by measuring the amplifying factor as a function of the delay between pump pulse and harmonic seed. Two different regimes are pointed out, following the pumping scheme used. For one of them, a delay in the gain generation compared with the pumping laser pulse is observed.

4.
Opt Express ; 20(9): 10128-37, 2012 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-22535105

RESUMEN

The influence on Nickel-like Molybdenum soft-x-ray laser performance and stability of a low energy laser prepulse arriving prior to the main laser pumping pulses is experimentally investigated. A promising regime for 10 Hz operation has been observed. A four times increase in soft-x-ray laser operation time with a same target surface is demonstrated. This soft-x-ray laser operation mode corresponds to an optimum delay between the prepulse and the main pulses and to a prepulse energy greater than 20 mJ. We also show that this regime is not associated with a weaker degradation of the target or any reduced ablation rate. Therefore the role of preplasma density gradient in this effect is discussed.


Asunto(s)
Rayos Láser , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Rayos X
5.
Opt Express ; 20(23): 25391-9, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23187356

RESUMEN

Experimental results of a two-stage Ni-like Ag soft X-ray laser operated in a seed-amplifier configuration are presented. Both targets were pumped applying the double-pulse grazing incidence technique with intrinsic travelling wave excitation. The injection of the seed X-ray laser into the amplifier target was realized by a spherical mirror. The results show amplification of the seed X-ray laser and allow for a direct measurement of the gain lifetime. The experimental configuration is suitable for providing valuable input for computational simulations.

6.
Opt Lett ; 35(9): 1326-8, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20436557

RESUMEN

We present what we believe to be the first measurement of the spectral properties of a soft x-ray laser seeded by a high-order harmonic beam. Using an interferometric method, the spectral profile of a seeded Ni-like krypton soft x-ray laser (32.8 nm) generated by optical field ionization has been experimentally determined, and the shortest possible pulse duration has been deduced. The source exhibits a Voigt spectral profile with an FWHM of 3.1+/-0.3 mA, leading to a Fourier-transform pulse duration of 4.7 ps. This value is comparable with the upper limit of the soft x-ray pulse duration determined by experimentally investigating the gain dynamics, from which we conclude that the source has reached the Fourier limit. The measured bandwidth is in good agreement with the predictions of a radiative transfer code, including gain line narrowing and saturation rebroadening.

7.
Nature ; 431(7007): 426-9, 2004 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-15386005

RESUMEN

Synchrotrons have for decades provided invaluable sources of soft X-rays, the application of which has led to significant progress in many areas of science and technology. But future applications of soft X-rays--in structural biology, for example--anticipate the need for pulses with much shorter duration (femtoseconds) and much higher energy (millijoules) than those delivered by synchrotrons. Soft X-ray free-electron lasers should fulfil these requirements but will be limited in number; the pressure on beamtime is therefore likely to be considerable. Laser-driven soft X-ray sources offer a comparatively inexpensive and widely available alternative, but have encountered practical bottlenecks in the quest for high intensities. Here we establish and characterize a soft X-ray laser chain that shows how these bottlenecks can in principle be overcome. By combining the high optical quality available from high-harmonic laser sources (as a seed beam) with a highly energetic soft X-ray laser plasma amplifier, we produce a tabletop soft X-ray femtosecond laser operating at 10 Hz and exhibiting full saturation, high energy, high coherence and full polarization. This technique should be readily applicable on all existing laser-driven soft X-ray facilities.

8.
Opt Express ; 15(15): 9486-93, 2007 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19547296

RESUMEN

A soft x-ray laser from Ni-like Mo, pumped in grazing incidence (GRIP), is analyzed with regard to high repetition rate operation. Reliable lasing is obtained, but with significant energy fluctuations attributed mainly to beam pointing jitter from the pump laser. Two modes of operation are compared: continuously moving target and stationary target. With a moving target the soft X-ray output is constant on average, whereas the repeated use of the same target position leads to a pulse energy which increases for several tens of shots. This effect might be caused by improved guiding of the pump laser in the formed groove and the removal, through laser ablation, of the oxide layer on the target surface.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 2): 026406, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23005868

RESUMEN

The accurate characterization of thermal electron transport and the determination of heating by suprathermal electrons in laser driven solid targets are both issues of great importance to the current experiments being performed at the National Ignition Facility, which aims to achieve thermonuclear fusion ignition using lasers. Ionization, induced by electronic heat conduction, can cause the opacity of a material to drop significantly once bound-free photoionization is no longer energetically possible. We show that this drop in opacity enables measurements of the transmission of extreme ultraviolet (EUV) laser pulses at 13.9 nm to act as a signature of the heating of thin (50 nm) iron layers with a 50-nm thick parylene-N (CH) overlay irradiated by 35-fs pulses at irradiance 3×10(16) Wcm(-2). Comparing EUV transmission measurements at different times after irradiation to fluid code simulations shows that the target is instantaneously heated by hot electrons (with approximately 10% of the laser energy), followed by thermal conduction with a flux limiter of ≈0.05.

10.
Phys Rev Lett ; 99(12): 123902, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17930505

RESUMEN

The Maxwell-Bloch code COLAX has been upgraded to use detailed hydrodynamical and collisional-radiative simulations of a soft x-ray laser plasma with traveling-wave pumping. The seeding of short pulses of high-order harmonics of the pump laser into the x-ray laser medium has been simulated. The amplification is shown to be a dynamic, two-stage process: the atomic dipoles of the lasing ions are first coherently excited by the short pulse, and subsequently generate a radiation wake which is amplified along its path through the plasma, with consequences on the experimentally recorded spectra.

11.
Opt Lett ; 32(2): 139-41, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17186043

RESUMEN

We report the near-field imaging characterization of a 10 Hz Ni-like 18.9 nm molybdenum soft-x-ray laser pumped in a grazing incidence pumping (GRIP) geometry with a table-top laser driver. We investigate the effect of varying the GRIP angle on the spatial behavior of the soft-x-ray laser source. After multiparameter optimization, we were able to find conditions to generate routinely a high-repetition-rate soft-x-ray laser with an energy level of up to 3 microJ/pulse and to 6x10(17) photons/s/mm2/mrad2/(0.1% bandwidth) average brightness and 1x10(28) photons/s/mm2/mrad2/(0.1% bandwidth) peak brightness.

12.
Phys Rev Lett ; 95(17): 173902, 2005 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-16383831

RESUMEN

We present the first direct measurement of the time evolution of the gain of a soft x-ray laser amplifier. The measurement is based on the injection of a seed pulse, obtained by high-order harmonic generation, into an x-ray laser medium. Strong amplification occurs when the seed pulse is synchronized with the gain period. By precisely varying the delay between the x-ray laser plasma creation and the seed pulse injection, the actual temporal evolution of the soft x-ray amplifier gain is obtained with a subpicosecond resolution.

13.
Phys Rev Lett ; 95(1): 013001, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16090610

RESUMEN

We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (approximately 20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes.

14.
Phys Rev Lett ; 90(19): 193901, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12785946

RESUMEN

We investigate the relevance of the absorption limit concept in the optimization of high harmonic generation. Thanks to the first direct observation of the coherence length of the process from high-contrast Maker fringes, we unravel experimental conditions for which the harmonic dipole response is enhanced when phase matching is realized within the absorption limit, leading to record conversion efficiencies in argon. Moreover, we show that harmonic generation in guided or freely propagating geometries are equivalent in the loose focusing regime. This analysis is generalized to other advanced phase-matching schemes, thereby predicting the possibility to boost the conversion efficiencies using light noble gases.

15.
Opt Lett ; 28(12): 1049-51, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12836775

RESUMEN

We present a direct method of studying the focusability of an intense, short-pulse extreme-ultraviolet (XUV) beam obtained by high-harmonic generation. We perform near-field imaging of the focal spot of five high-harmonic orders strongly focused by a broadband toroidal mirror. To visualize the focal spot directly, we image the fluorescence induced by an XUV beam on a cerium-doped YAG crystal on a visible CCD camera. We can thus measure the harmonic spot size on a single image, together with the Strehl ratio, to evaluate the quality of focusing. Such techniques should become instrumental in optimizing the focusing conditions and reaching intensities required for exploring attosecond nonlinear optics in the XUV range.

16.
Phys Rev Lett ; 91(6): 063901, 2003 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-12935073

RESUMEN

The absolute timing of the high-harmonic attosecond pulse train with respect to the generating IR pump cycle has been measured for the first time. The attosecond pulses occur 190+/-20 as after each pump field maxima (twice per optical cycle), in agreement with the "short" quantum path of the quasiclassical model of harmonic generation.

17.
Phys Rev Lett ; 86(14): 3004-7, 2001 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-11290093

RESUMEN

We report the first saturated amplification of an optical-field-ionization soft x-ray laser. The amplifying medium is generated by focusing a circularly polarized 330-mJ, 35-fs, 10-Hz Ti:sapphire laser system in a few-mm cell filled with xenon. A gain of 67 cm(-1) on the 4d(9)5p-4d(9)5d transition at 41.8 nm in Pd-like xenon and a gain-length product of 15 have been inferred at saturation. This source delivers about 5 x 10(9) photons per pulse. The influence of the pumping energy and the laser polarization on the lasing output are also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA